Skip to main content

The Red Blood Cell Storage Lesion: A Controversy of Biology Versus Randomized Controlled Trials

  • Chapter
  • First Online:
Essentials of Blood Product Management in Anesthesia Practice

Abstract

Randomized controlled trials (RCTs) are reporting no difference in mortality when older v. fresher blood is transfused, yet the biology of red cell aging (storage lesions) in the blood bank shows multiple effects. The contrast of cellular biologic changes of cells removed from circulation, then stored versus outcome research is important. The difference in conclusions from these research avenues drives practice. Many physicians may be confused in light of a Cleveland Clinic retrospective study that created controversy over outcomes, after older blood was transfused. That paper sparked public hearings held by the U.S. Food and Drug Administration (FDA). Widely disparate results exist regarding the biology of aged stored blood, retrospective outcome data, and RCTs. This review poses the question of whether the RCTs to date have been designed with hypotheses based upon the findings of the biology. The RCTs have not utilized non-inferiority design- what is required for proving a negative. Therefore, it remains unclear, if claims, being made today, that age of stored blood does not make a difference are scientifically valid. In the end, much work is yet to be done. Furthermore, no RCTs have been conducted comparing the use of stored blood (any age) to the use of best practices in patient blood management to avoid transfusion altogether, but that is a different question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization global database on blood safety: report 2004–2005. Geneva: World Health Organization; 2008.

    Google Scholar 

  2. Starr D. Blood: an epic history of medicine and commerce. New York: Harper Collins; 2002. p. 53–146.

    Google Scholar 

  3. Seghatchian J. Multilayer-strategy to enhance optimal safety of the blood supply: the role of pathogen inactivation for optimizing recipient safety and helping health care cost containment. Transfus Apher Sci. 2015;52:233–6.

    Article  PubMed  Google Scholar 

  4. Blood Connects Us All. World Health Organization. N.p., n.d. Web. 13 June 2016.

    Google Scholar 

  5. Leparc GF. Safety of the blood supply. Cancer Control. 2015;22:7–15.

    Article  PubMed  Google Scholar 

  6. Bolton-Maggs PH, Cohen H. Serious Hazards of Transfusion (SHOT) haemovigilance and progress in improving transfusion safety. Br J Haematol. 2013;163:303–14.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koch CG, Li L, Sessler DI, et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med. 2008;358:1229–39.

    Article  CAS  PubMed  Google Scholar 

  8. Weinberg JA, McGwin G Jr, Griffin RL, et al. Age of transfused blood: an independent predictor of mortality despite universal leukoreduction. J Trauma. 2008;65:279–82; discussion 282–284.

    PubMed  Google Scholar 

  9. Robinson SD, Janssen C, Fretz EB, et al. Red blood cell storage duration and mortality in patients undergoing percutaneous coronary intervention. Am Heart J. 2010;159:876–81.

    Article  PubMed  Google Scholar 

  10. Eikelboom JW, Cook RJ, Liu Y, Heddle NM. Duration of red cell storage before transfusion and in-hospital mortality. Am Heart J. 2010;159:737–743.e1.

    Article  PubMed  Google Scholar 

  11. Edgren G, Kamper-Jørgensen M, Eloranta S, et al. Duration of red blood cell storage and survival of transfused patients. Transfusion. 2010;50:1185–95.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leal-Noval SR, Muñoz-Gómez M, Arellano-Orden V, et al. Impact of age of transfused blood on cerebral oxygenation in male patients with severe traumatic brain injury. Crit Care Med. 2008;36:1290–6.

    Article  PubMed  Google Scholar 

  13. Gauvin F, Spinella PC, Lacroix J, et al. Association between length of storage of transfused red cells and multiple organ dysfunction syndrome in pediatric intensive care patients. Transfusion. 2010;50:1902–13.

    Article  PubMed  Google Scholar 

  14. Dzik W. Fresh blood for everyone? Balancing availability and quality of stored RBCs. Transf Med. 2008;18:260–5.

    Article  CAS  Google Scholar 

  15. Belpulsi D, Spitalnik SL, Hod EA. The controversy over age of blood: what do clinical trials really teach us? Blood Transf. 2017;15:112–5.

    Google Scholar 

  16. Roback JD. Perspectives on the impact of storage duration on blood quality and transfusion outcomes. Vox Sang. 2016;111:357–64. https://doi.org/10.1111/vox.12441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qu L, Triulzi DJ. Clinical effects of red blood cell storage. Cancer Control. 2015;22:26–37.

    Article  PubMed  Google Scholar 

  18. Carl H, Soumya R, Srinivas P, Vani R. Oxidative stress in erythrocytes of banked ABO blood. Hematology. 2016;21:630–24.

    Article  CAS  PubMed  Google Scholar 

  19. Nagababu E, Scott AV, Johnson DJ, et al. Oxidative stress and rheologic properties of stored red blood cells before and after transfusion to surgical patients. Transfusion. 2016;56:1101–11.

    Article  CAS  PubMed  Google Scholar 

  20. The International Committee for Standardization in Hematology. Recommended methods for radioisotope red cell survival studies. Blood. 1971;38:378–86.

    Article  Google Scholar 

  21. Yoshida T, Shevkoplyas SS. Anaerobic storage of red blood cells. Blood Transfus. 2010;8:220–36.

    PubMed  PubMed Central  Google Scholar 

  22. Paglia G, D’Alessandro A, Rolfsson Ó, et al. Biomarkers defining the metabolic age of red blood cells during cold storage. Blood. 2016;128:e43–50.

    Article  CAS  PubMed  Google Scholar 

  23. Rinalducci S, Zolla L. Biochemistry of storage lesions of red cells and platelet concentrates: a continuous fight implying oxidative/nitrosative/phosphorylative stress and signaling. Trans Apher Sci. 2015;52:262–9.

    Article  Google Scholar 

  24. Pallotta V, Rinalducci S, Zolla L. Red blood cell storage affects the stability of cytosolic native protein complexes. Transfusion. 2015;55:1927–36.

    Article  CAS  PubMed  Google Scholar 

  25. Tarasev M, Chakraborty S, Alfano K. RBC mechanical fragility as a direct blood quality metric to supplement the storage time. Mil Med. 2015;180:150–7.

    Article  PubMed  Google Scholar 

  26. Grau M, Freiderichs P, Krehan S, et al. Decrease in red cell blood cell deformability is associated with a reduction in RBC-NOS activation during storage. Clin Hemorrheol Microcirc. 2015;16:215–29.

    Article  CAS  Google Scholar 

  27. Hu X, Patel RP, Weinberg JA, et al. Membrane attack complex generation increases as a function of time in stored blood. Transfus Med. 2014;24:114–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hess JR. Measures of stored red blood cell quality. Vox Sang. 2014;107:1–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bennett-Guerrero E, Veldman TH, Doctor A, et al. Evolution of adverse changes in stored RBCs. Proc Natl Acad Sci U S A. 2007;104:17063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai AG, Hofmann A, Cabrales P, Intaglietta M. Perfusion vs. oxygen delivery in transfusion with “fresh” and “old” red blood cells: the experimental evidence. Transf Apher Sci. 2010;43:69–78.

    Article  Google Scholar 

  31. Tsai AG, Cabrales P, Intaglietta M. Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions. Transfusion. 2004;44:1626–34.

    Article  PubMed  Google Scholar 

  32. Scott AV, Nagababu E, Johnson DJ, et al. 2,3-diphosphoglycerate concentrations in autologous salvaged versus stored red blood cells in surgical patients after transfusion. Anesth Analg. 2016;122:616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marik PE, Sibbald WJ. Effect of stored-blood transfusion on oxygen-delivery in patients with sepsis. JAMA. 1993;269:3024–9.

    Article  CAS  PubMed  Google Scholar 

  34. Walsh TS, McArdle F, Mclellan SA, et al. Does storage time of transfused red blood cells influence regional or global indexes of tissue oxygenation in anemic critically ill patients? Crit Care Med. 2004;32:364–71.

    Article  PubMed  Google Scholar 

  35. Fitzgerald RD, Martin CM, Dietz GE, Doig GS, Potter RF, Sibbald WJ. Transfusing red blood cells stored in citrate phosphate dextrose adenine-1 for 28 days fails to improve tissue oxygenation in rats. Crit Care Med. 1997;25:726–32.

    Article  CAS  PubMed  Google Scholar 

  36. Dhabangi A, Ainomugisha B, Cserti-Gazdewich C, et al. Effect of transfusion of red blood cells with longer vs shorter storage duration on elevated blood lactate levels in children with severe anemia. JAMA. 2015;314:2514–23. https://doi.org/10.1001/jama.2015.13977.

    Article  CAS  PubMed  Google Scholar 

  37. Koshkaryev A, Zelig O, Manny N, Yedgar S, Barshtein G. Rejuvenation treatment of stored red blood cells reverses-storage-induced adhesion to vascular endothelial cells. Transfusion. 2009;49:2163–43.

    Article  CAS  Google Scholar 

  38. Weiskopf RB, Feiner J, Hopf H, et al. Fresh blood and aged stored blood are equally efficacious in immediately reversing anemia-induced brain oxygenation deficits in humans. Anesthesiology. 2006;104:911–20.

    Article  PubMed  Google Scholar 

  39. Seo J, Conegliano D, Farrell M, et al. A microengineered model of RBC transfusion-induced pulmonary vascular injury. Sci Rep. 2017;7:3413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Parviz Y, Hsia C, Alemayehu M, et al. The effect of fresh versus standard blood transfusion on microvascular endothelial function. Am Heart J. 2016;181:156–61.

    Article  PubMed  Google Scholar 

  41. Bordbar A, Johansson PI, Paglia G, et al. Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes. Transfusion. 2016;56:852–62.

    Article  PubMed  Google Scholar 

  42. Nemkov T, Hansen KC, Dumont LJ, D'Alessandro A. Metabolomics in transfusion medicine. Transfusion. 2016;56:980–93.

    Article  PubMed  Google Scholar 

  43. Hayek SS, Neuman R, Ashraf K, et al. Effect of storage-aged red blood cell transfusions on endothelial function in healthy subjects. Transfusion. 2015;55:2768–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brown CH 4th, Grega M, Seines OA, et al. Length of red cell unit storage and risk for delirium after cardiac surgery. Anesth Analg. 2014;119:242–50. https://doi.org/10.1213/ANE.00000000000134.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Berra L, Pinciroli R, Stowell CP, et al. Autologous transfusion of stored red blood cells increases pulmonary artery pressure. Am J Resp Crit Care Med. 2014;190:800–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Karger R, Lukow C, Kretschmer V. Deformability of red blood cells and correlation with ATP content during storage as leukocyte-depleted whole blood. Transfus Med Hemother. 2012;39:277–82.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Callan MB, Patel RT, Rux AH, et al. Transfusion of 28 day-old leukoreduced or non-leukoreduced stored red blood cells induces an inflammatory response in healthy dogs. Vox Sang. 2013;105:319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manlhiot C, McCrindle BW, Menjak IB, et al. Longer blood storage is associated with suboptimal outcomes in high-risk pediatric cardiac surgery. Ann Thorac Surg. 2012;93:1563–9.

    Article  PubMed  Google Scholar 

  49. Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 2013;121:1276–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baek JH, et al. Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy. J Clin Invest. 2012;122:1444–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gladwin MT, Kanias T, Kim-Shapiro DB. Hemolysis and cell-free hemoglobin drive an intrinsic mechanism for human disease. J Clin Invest. 2012;122:1205–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Damiani E, Adario E, Luchetti MM, et al. Plasma free hemoglobin and microcirculatory response to fresh or old blood transfusions in sepsis. PLoS One. 2015; https://doi.org/10.1371/jopurnal.pone.0122655.

  53. Rapido F, Brittenham GM, Bandyopadhyay S, et al. Prolonged red cell storage before transfusion increases extravascular hemolysis. J Clin Invest. 2017;127(1):375–82.

    Article  PubMed  Google Scholar 

  54. Dietrich HH, Ellsworth ML, Sprague RS, Dacey RG Jr. Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol. 2000;278:H1294–8.

    Article  CAS  PubMed  Google Scholar 

  55. Raza S, Ali Baig M, Chang C, et al. A prospective study on red blood cell transfusion related hyperkalemia in critically ill patients. J Clin Med Res. 2015;7:417–21.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee AC, Heitmiller ES. Preventing pediatric transfusion-associated incidents of hyperkalemic cardiac arrest: Anesthesia Patient Safety Foundation; 2014. https://www.apsf.org/newsletters/html/2014/June/01_pedhyper.htm. Accessed October 31, 2016.

  57. Weed RI, LaCelle PL, Merrill EW. Metabolic dependence of red cell deformability. J Clin Invest. 1969;48:795–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cognasse F, Hamzeh-Cognasse H, Laradi S, et al. The role of microparticles in inflammation and transfusion: a concise review. Transfus Apher Sci. 2015;53:159–67.

    Article  PubMed  Google Scholar 

  59. Fischer D, Büssow J, Meybohm P, et al. Microparticles from stored red blood cells enhance procoagulant and proinflammatory activity. Transf. 2017; https://doi.org/10.1111/trf.14268.

  60. Levin G, Sukhareva E, Lavrentieva A. Impact of microparticles derived from erythrocytes on fibrinolysis. J Thromb Thrombolysis. 2016;41:452–8.

    Article  CAS  PubMed  Google Scholar 

  61. Rubin O, Deloble J, Prudent M, et al. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation. Transfusion. 2013;53:1744–54.

    Article  CAS  PubMed  Google Scholar 

  62. Gamonet C, Mourey G, Aupet S, et al. How to quantify microparticles in RBCs? A validated cytometry method allows the detection of an increase in microparticles during storage. Transfusion. 2017;57:504–16.

    Article  PubMed  Google Scholar 

  63. Said AS, Doctor A. Influence of red blood cell-derived microparticles upon vasoregulation. Blood Transfus. 2017;15:522–34.

    PubMed  PubMed Central  Google Scholar 

  64. Jy W, Ricci M, Shariatmadar S, et al. Microparticles in stored red blood cells as potential mediators of transfusion complications. Transfusion. 2011;51:886–93.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rubin O, Canellini G, Delobel J, Lion N, Tissot JD. Red blood cell microparticles: clinical relevance. Transfus Med Hemother. 2012;39:342–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Mechanisms and significance of eryptosis. Antioxid Redox Signal. 2006;8:1183–92.

    Article  CAS  PubMed  Google Scholar 

  67. Rinalducci S, Ferru E, Blasi B, Turrini F, Zolla L. Oxidative stress caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. Blood Transfus. 2012;10(Suppl 2):s55–62.

    Google Scholar 

  68. Solomon SB, Wang D, Sun J, et al. Mortality increases after massive exchange transfusion with older stored blood in canines with experimental pneumonia. Blood. 2013;121:1663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. D’Alessandro A, Liumbruno G, Grazzini G, Zolla L. Red blood cell storage: the story so far. Blood Transfus. 2010;8:82–8.

    PubMed  PubMed Central  Google Scholar 

  70. Sweeney J, Kouttab N, Kurtis J. Stored red blood cell supernatant facilitates thrombin generation. Transfusion. 2009;49:1569–79.

    Article  CAS  PubMed  Google Scholar 

  71. Purdy FR, Tweeddale MG, Merrick PM. Association of mortality with age of blood transfused in septic ICU patients. Can J Anaesth. 1997;44:1256–61.

    Article  CAS  PubMed  Google Scholar 

  72. Zallen G, Offner PJ, Moore EE, et al. Age of transfused blood is an independent risk factor for post injury multiple organ failure. Am J Surg. 1999;178:570–2.

    Article  CAS  PubMed  Google Scholar 

  73. Vamvakas EC, Carven JH. Length of storage of transfused red blood cells and postoperative morbidity in patients undergoing coronary artery bypass graft surgery. Transfusion. 2000;40:101–9.

    Article  CAS  PubMed  Google Scholar 

  74. Mynster T, Nielsen HJ, Danish RANXO5 Colorectal Cancer Study Group. Storage time of transfused blood and disease recurrence after colorectal cancer surgery. Dis Colon Rect. 2001;44:955–64.

    Article  CAS  Google Scholar 

  75. Offner PJ, Moore EE, Biffl WL, Johnson JL, Silliman CC. Increased rate of infection associated with transfusion of old blood after severe injury. Arch Surg. 2002;137:711–6.

    Article  PubMed  Google Scholar 

  76. Leal-Noval SR, Jara-Löpez I, Garcia-Garmendia JL, et al. Influence of erythrocyte concentrate storage time on postsurgical morbidity in cardiac surgery patients. Anesthesiology. 2003;98:815–22.

    Article  PubMed  Google Scholar 

  77. Van de Watering L, Lorinser J, Versteegh M, Westendord R, Brand A. Effects of storage time of red blood cell transfusions on the prognosis of coronary artery bypass graft patients. Transfusion. 2006;46:1712–8.

    Article  PubMed  Google Scholar 

  78. Wang D, Sun J, Solomon SB, Klein HG, Natanson C. Transfusion of older stored blood and risk of death: a meta-analysis. Transfusion. 2012;52:1184–95.

    Article  PubMed  Google Scholar 

  79. Alexander PE, Barty R, Fei Y, et al. Transfusion of fresher vs older red blood cells in hospitalized patients: a systematic review and meta-analysis. Blood. 2016;127:400–10.

    Article  CAS  PubMed  Google Scholar 

  80. Da F, Hébert P, Hogan DL, et al. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low birth-weight infants: the ARIPI randomized trial. JAMA. 2012;308:1443–51.

    Article  Google Scholar 

  81. Lacroix J, Hébert PC, Fergusson D, et al. The ABLE study: a randomized controlled trial on the efficacy of fresh red cell units to improve the outcome of transfused critically ill adults. Transfus Clin Biol. 2015;22:107–11.

    Article  CAS  PubMed  Google Scholar 

  82. Heddle NM, Cook RJ, Arnold DM, et al. Effect of short-term vs. long-term blood storage on mortality after transfusion. N Engl J Med. 2016;375:1937–45.

    Article  PubMed  Google Scholar 

  83. Rana R, Fernández-Pérez ER, Khan SA, et al. Transfusion-related acute lung injury and pulmonary edema in critically ill patients: a retrospective study. Transfusion. 2006;46:1478–83.

    Article  PubMed  Google Scholar 

  84. Goel R, Johnsons DJ, Scott AV, et al. Red blood cells stored 35 days or more are associated with adverse outcomes in high-risk patients. Transfusion. 2016;56:1690–8.

    Article  PubMed  Google Scholar 

  85. Non-Inferiority Clinical Trials to Establish Effectiveness- Guidelines for Industry, United States Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER) Centers for Biologics Evaluation and Research (CBER), November 2016, pages 1–56.

    Google Scholar 

  86. Steiner ME, Ness PM, Assmann SF, et al. Effects of red-cell storage duration on patients undergoing cardiac surgery. N Engl J Med. 2015;372:1419–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. AABB. Press Release: October 24, 2016: International trial shows no survival advantage with fresh red blood cells. http://www.aabb.org/press?Pages?pr161024.aspx.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Smajdor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smajdor, L., Spiess, B.D. (2021). The Red Blood Cell Storage Lesion: A Controversy of Biology Versus Randomized Controlled Trials. In: Scher, C.S., Kaye, A.D., Liu, H., Perelman, S., Leavitt, S. (eds) Essentials of Blood Product Management in Anesthesia Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-59295-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59295-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59294-3

  • Online ISBN: 978-3-030-59295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics