Skip to main content

The Coagulation System and Blood Clot Stability

  • Chapter
  • First Online:
Essentials of Blood Product Management in Anesthesia Practice

Abstract

Perioperative hemorrhage is one of the major challenges in the care of patients undergoing surgical and other invasive procedures. The etiologies can include technical difficulties and complications of surgery, and coagulation abnormalities. The coagulation cascade, a very dynamic process involving series of enzymatic reactions, is pivotal to a normal blood circulation and hemostasis. Hemostasis can be achieved by activation of intrinsic pathway or extrinsic pathway. It is also critical to maintain a delicate balance between the clot formation and the fibrinolysis. Hemostasis can be categorized as primary hemostasis (platelets adhere to the site of injury) and secondary hemostasis (coagulation activation leading to fibrin and clot formation). The normal coagulation process can include three phases: the initiation phase, the amplification phase and the propagation phase. The most important regulation mechanisms in coagulation are their multiple zymogens and cofactors all requiring activation prior to exerting their effects. The basic principle of clot stability is maintaining a balance between clot formation and fibrinolysis. This balance is regulated by numerous factors including molecular, metabolic, mechanical, and pharmacologic. And the processes of coagulation and fibrinolysis frequently occur simultaneously in many clinical scenarios. The many steps in coagulation and fibrinolysis can also be the targets for pharmacological interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levi M, Sivapalaratnam S. Coagulation and anticoagulation in the intraoperative setting. Transfus Apher Sci. 2019. pii: S1473-0502(19)30106-5. https://doi.org/10.1016/j.transci.2019.06.013. PMID: 31307835.

  2. Adams RL, Bird RJ. Coagulation cascade and therapeutics update: relevance to nephrology. Part 1: overview of coagulation, thrombophilias and history of anticoagulants. Nephrology. 2009;14(5):462–70. https://doi.org/10.1111/j.1440-1797.2009.01128.x. PMID: 19674315.

    Article  CAS  PubMed  Google Scholar 

  3. Boon GD. An overview of hemostasis. Toxicol Pathol. 1993;21(2):170–9. https://doi.org/10.1177/019262339302100209. Sage Publications. Thousands Oaks, CA.

    Article  CAS  PubMed  Google Scholar 

  4. Bombeli T, Spahn DR. Updates in perioperative coagulation: physiology and management of thromboembolism and haemorrhage. Br J Anaesth. 2004;93(2):275–87.

    Article  CAS  Google Scholar 

  5. Bhagavan N. Medical biochemistry. San Diego: Harcourt/Academic Press; 2006. p. 839–872i.

    Google Scholar 

  6. Saito H, Matsushita T, Kojima T. Historical perspective and future direction of coagulation research. J Thromb Haemost. 2011;9:352–63.

    Article  Google Scholar 

  7. Morawitz P. Die chemie der blutgerinnung. Ergebnisse der Physiologie. 1905;4(1):307–422. (translated text was: Beck EA. The chemistry of blood coagulation: a summary by Paul Morawitz (1905). Thrombosis and haemostasis. 1977 Jan;37(01):376–9.)

    Google Scholar 

  8. Patek AJ, Stetson RP. Hemophilia. I. the abnormal coagulation of the blood and its relation to the blood platelets. J Clin Invest. 1936;15(5):531–42.

    Article  CAS  Google Scholar 

  9. Howell WH, Holt E. Two new factors in blood coagulation—heparin and pro-antithrombin. Am J Physiol-Legacy Content. 1918;47(3):328–41.

    Article  CAS  Google Scholar 

  10. Wright HP. Blood coagulation. Br Med J. 1955;2(4932):184. PMC1980349.

    Article  Google Scholar 

  11. Griffin JH, Evatt BR, Zimmerman TS, Kleiss AJ, Wideman C. Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 1981;68(5):1370–3.

    Article  CAS  Google Scholar 

  12. Nixon RR, Cooper MR, Esmon CT. Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest. 1984;74(6):2082–8.

    Article  Google Scholar 

  13. Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145(3638):1310–2.

    Article  CAS  Google Scholar 

  14. Smith SA, Travers RJ, Morrissey JH. How it all starts: initiation of the clotting cascade. Crit Rev Biochem Mol Biol. 2015;50(4):326–36.

    Article  CAS  Google Scholar 

  15. https://www.researchgate.net/figure/Nomenclature-of-the-coagulation-proteins-clotting-factors_tbl1_270005500. Accessed 18 Aug 2019.

  16. Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58(5):515.

    Article  CAS  Google Scholar 

  17. Hoffman M, Pawlinski R. Hemostasis: old system, new players, new directions. Thromb Res. 2014;133:S1–2.

    Article  Google Scholar 

  18. O’Donnell JS, O’Sullivan JM, Preston RJ. Advances in understanding the molecular mechanisms that maintain normal haemostasis. Br J Haematol. 2019;186(1):24–36.

    Article  Google Scholar 

  19. Dahlbäck B. Blood coagulation and its regulation by anticoagulant pathways: genetic pathogenesis of bleeding and thrombotic diseases. J Intern Med. 2005;257(3):209–23.

    Article  Google Scholar 

  20. Furie B. Pathogenesis of thrombosis. ASH Education Program Book. 2009;2009(1):255–8. PMID: 20008207.

    Google Scholar 

  21. Wolberg AS, Pieters M. Fibrinogen and fibrin: an illustrated review. Blood Rev. 2007;21(3):131–42. Res Pract Thromb Haemost. 2019 Apr;3(2):161–72. https://doi.org/10.1002/rth2.12191. PMCID: PMC6462751.

    Article  CAS  Google Scholar 

  22. Aleman MM, Walton BL, Byrnes JR, Wolberg AS. Fibrinogen and red blood cells in venous thrombosis. Thromb Res. 2014;133:S38–40. https://doi.org/10.1016/j.thromres.2014.03.017. PMID: 24759140.

    Article  Google Scholar 

  23. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29(1):17–24. https://doi.org/10.1016/j.blre.2014.09.003. PMCID: PMC4314363.

    Article  CAS  Google Scholar 

  24. Hajjar KA. The molecular basis of fibrinolysis. In: Hematology of infancy and childhood, vol. 2; 1998. p. 1557–73.

    Google Scholar 

  25. Dejouvencel T, Doeuvre L, Lacroix R, Plawinski L, Dignat-George F, Lijnen HR, et al. Fibrinolytic cross-talk: a new mechanism for plasmin formation. Blood. 2010;115(10):2048–56. https://doi.org/10.1182/blood-2009-06-228817. PMCID: PMC2896557.

    Article  CAS  Google Scholar 

  26. Gersh KC, Edmondson KE, Weisel JW. Flow rate and fibrin fiber alignment. J Thromb Haemost. 2010;8(12):2826–8. PMCID: PMC3071618.

    Article  CAS  Google Scholar 

  27. Cooper AV, Standeven KF, Ariëns RA. Fibrinogen gamma-chain splice variant γ′ alters fibrin formation and structure. Blood. 2003;102(2):535–40. https://doi.org/10.1182/blood-2002-10-3150. PMID: 12663453.

    Article  CAS  Google Scholar 

  28. Travis J, Salvesen GS. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52(1):655–709. https://doi.org/10.1146/annurev.bi.52.070183.003255. PMID: 6193754.

    Article  CAS  Google Scholar 

  29. Broze GJ, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis: role of carboxypeptidase-U and the premature lysis of clots from hemophilic plasma. Blood. 1996;88(10):3815–23. PMID: 8916945.

    Article  CAS  Google Scholar 

  30. Cesarman-Maus G, Ríos-Luna NP, Deora AB, Huang B, Villa R, del Carmen CM, Alarcón-Segovia D, Sánchez-Guerrero J, Hajjar KA. Autoantibodies against the fibrinolytic receptor, annexin 2, in antiphospholipid syndrome. Blood. 2006;107(11):4375–82.

    Article  CAS  Google Scholar 

  31. Cucuianu M, Knauer O, Roman S. α2-Antiplasmin, plasminogen activator inhibitor (PAI) and dilute blood clot lysis time in selected disease states. Thromb Haemost. 1991;66(05):586–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayyar, N., Mannasian, H., Yang, L., Liu, H. (2021). The Coagulation System and Blood Clot Stability. In: Scher, C.S., Kaye, A.D., Liu, H., Perelman, S., Leavitt, S. (eds) Essentials of Blood Product Management in Anesthesia Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-59295-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59295-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59294-3

  • Online ISBN: 978-3-030-59295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics