Skip to main content

Commonly Prescribed Medications that Affect Clotting: A Comprehensive Overview

  • 785 Accesses

Abstract

Some of the most commonly used medications have new risks associated with their use. For example, millions of Americans co-administer several types of drugs from different classes such as anticoagulants, NSAIDs, and antidepressants. New research suggests that taking these medications together increases the risk of stroke, hemorrhage, and brain bleeding, which can result in death. This manuscript will discuss the three main types of drugs that affect clotting: anticoagulants, antifibrinolytics, and antiplatelets, and interactions that can occur with these medications. We will also discuss other combinations of over-the-counter medications, supplements, and herbs that affect clotting.

Keywords

  • Blood clotting
  • Antidepressants
  • NSAID
  • Bleeding
  • Stroke

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   50.28
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   65.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   87.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 19.1
Fig. 19.2
Fig. 19.3

References

  1. Dahlbäck B. Advances in understanding pathogenic mechanisms of thrombophilic disorders. Blood. 2008;112(1):19–27.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Franchini M, Liumbruno GM, Bonfanti C, Lippi G. The evolution of anticoagulant therapy. Blood Transfus. 2016;14(2):175–84.

    PubMed  PubMed Central  Google Scholar 

  3. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lic VS. Heart disease and stroke statistics-2019 at-a-glance heart disease, stroke and other cardiovascular diseases. Am Hear Assoc. 2019;139:1–5.

    Google Scholar 

  4. Raskob GE, Silverstein R, Bratzler DW, Heit JA, White RH. Surveillance for deep vein thrombosis and pulmonary embolism. Recommendations from a national workshop. Am J Prev Med. 2010;38(4 SUPPL):S502–9.

    CrossRef  PubMed  Google Scholar 

  5. Moser KM, LeMoine JR. Is embolic risk conditioned by location of deep venous thrombosis? Ann Intern Med. 1981;94(4 pt 1):439–44.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. J Thromb Thrombolysis. 2016;41(1):3–14.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grosse SD, Nelson RE, Nyarko KA, Richardson LC, Raskob GE. The economic burden of incident venous thromboembolism in the United States: a review of estimated attributable healthcare costs. Thromb Res. 2016;137:3–10. [Internet]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0049384815302097

    CrossRef  CAS  PubMed  Google Scholar 

  8. Heit JA, Ashrani AA, Crusan DJ, McBane RD, Petterson TM, Bailey KR. Reasons for the persistent incidence of venous thromboembolism. Thromb Haemost. 2017;117(2):390–400.

    CrossRef  PubMed  Google Scholar 

  9. Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease. Chest. 2016;149(2):315–52.

    CrossRef  PubMed  Google Scholar 

  10. Lauw MN, Büller HR. Treatment of deep vein thrombosis. In: Current approaches to deep vein thrombosis. Future medicine, 2014. https://www.futuremedicine.comhttps://doi.org/10.2217/fmeb2013.13.98.

  11. Gray E, Mulloy B, Barrowcliffe TW. Heparin and low-molecular-weight heparin. Thromb Haemost. 2008;99(5):807–18.

    CAS  PubMed  Google Scholar 

  12. DeLoughery TG. Warfarin. In: Hemostasis and thrombosis. 3rd ed. Springer, Cham; 2015. https://doi.org/10.1007/978-3-319-09312-3.

  13. Schrör K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin Thromb Hemost. 1997;23(4):349–56.

    CrossRef  PubMed  Google Scholar 

  14. Wakefield TW, Obi AT, Henke PK. An aspirin a day to keep the clots away. Circulation. 2014;130(13):1031–3.

    CrossRef  PubMed  Google Scholar 

  15. Marik PE, Cavallazzi R. Extended anticoagulant and aspirin treatment for the secondary prevention of thromboembolic disease: a systematic review and meta-analysis. PLoS One. 2015;10(11):1–12.

    CrossRef  CAS  Google Scholar 

  16. Mant J, Hobbs FR, Fletcher K, Roalfe A, Fitzmaurice D, Lip GY, et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham atrial fibrillation treatment of the aged study, BAFTA): a randomised controlled trial. Lancet. 2007;370(9586):493–503.

    CrossRef  CAS  PubMed  Google Scholar 

  17. Levy JH, Koster A, Quinones QJ, Milling TJ, Key NS. Antifibrinolytic therapy and perioperative considerations. Anesthesiology. 2018;128(3):657–70.

    CrossRef  CAS  PubMed  Google Scholar 

  18. Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2017;37(3):e13–21.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dhir A Antifibrinolytics in cardiac surgery. Ann Card Anaesth. 2013;16(2):117–25.

    Google Scholar 

  20. Dunn CJ, Goa KL. Tranexamic acid: a review of its use in surgery and other indications. Drugs. 1999;57(6):1005–32. https://doi.org/10.2165/00003495-199957060-00017.

  21. Lumsden MA, Wedisinghe L. Tranexamic acid therapy for heavy menstrual bleeding. Expert Opin Pharmacother. 2011;12(13):2089–95.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Vojacek J. Clinical monitoring of the antithrombotic treatment. Cor Vasa. 2012;54(2):e97–103.

    CrossRef  Google Scholar 

  23. Weinberger J. Adverse effects and drug interactions of antithrombotic agents used in prevention of ischaemic stroke. Drugs. 2005;65(4):461–71.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Hicks RW, Wanzer LJ, Goeckner B. Perioperative pharmacology: blood coagulation modifiers. AORN J. 2011;93(6):726–36.

    CrossRef  PubMed  Google Scholar 

  25. Moore N. Ibuprofen: a journey from prescription to over-the-counter use. J R Soc Med. 2007;100(Suppl 48):2–6.

    CrossRef  PubMed  Google Scholar 

  26. Tsai HH, Lin HW, Lu YH, Chen YL, Mahady GB. A review of potential harmful interactions between anticoagulant/antiplatelet agents and Chinese herbal medicines. PLoS One. 2013;8(5):e64255.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Serebruany VL. Selective serotonin reuptake inhibitors and increased bleeding risk: are we missing something? Am J Med. 2006;119(2):113–6.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Schalekamp T, Klungel OH, Souverein PC, De Boer A. Increased bleeding risk with concurrent use of selective serotonin reuptake inhibitors and coumarins. Arch Intern Med. 2008;168(2):180–5.

    CrossRef  PubMed  Google Scholar 

  29. Barnes GD, Ageno W, Ansell J, Kaatz S. Recommendation on the nomenclature for oral anticoagulants: communication from the SSC of the ISTH. J Thromb Haemost. 2015;13(6):1154–6.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Kane S. NOAC, DOAC, or TSOAC: what should we call novel oral anticoagulants? Pharm Times. 2016.

    Google Scholar 

  31. Easton JD, Lopes RD, Bahit MC, Wojdyla DM, Granger CB, Wallentin L, et al. Apixaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of the ARISTOTLE trial. Lancet Neurol. 2012;11(6):503–11.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.

    CrossRef  CAS  PubMed  Google Scholar 

  35. Joe D. More in-depth version of the coagulation cascade. Wikimedia Commons. 2007; p. N/A

    Google Scholar 

  36. Bowen R. vitamin K. Vivo Pathophysiology. 2019. p. N/A.

    Google Scholar 

  37. Shearer MJ. vitamin K deficiency bleeding (VKDB) in early infancy. Blood Rev. 2009;23(2):49–59.

    Google Scholar 

  38. Controversies concerning vitamin K and the newborn. American academy of pediatrics committee on fetus and newborn. Pediatrics. 2003;112(1 Pt 1):191–2.

    Google Scholar 

  39. Pirmohamed M. Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol. 2006;62(5):509–11.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Higdon J. vitamin K. Linus Pauling Institute. Miconutrient Information Center. 2000. p. N/A.

    Google Scholar 

  41. Leung, LLK, Mannucci, PM, Tirnauer JS. Direct oral anticoagulants and parenteral direct thrombin inhibitors: dosing and adverse effects - UpToDate. UpToDate. 2019. p. N/A.

    Google Scholar 

  42. Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16.

    CrossRef  CAS  PubMed  Google Scholar 

  43. Gerotziafas GT, Elalamy I, Depasse F, Perzborn E, Samama MM. In vitro inhibition of thrombin generation, after tissue factor pathway activation, by the oral, direct factor Xa inhibitor rivaroxaban. J Thromb Haemost. 2007;5(4):886–8.

    CrossRef  CAS  PubMed  Google Scholar 

  44. Samama MM. The mechanism of action of rivaroxaban – an oral, direct factor Xa inhibitor – compared with other anticoagulants. Thromb Res. 2011;127(6):497–504.

    Google Scholar 

  45. Mueck W, Lensing AWA, Agnelli G, Decousus H, Prandoni P, Misselwitz F. Rivaroxaban: population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for stroke prevention. Clin Pharmacokinet. 2011;50(10):675–86.

    CrossRef  CAS  PubMed  Google Scholar 

  46. Kearon C, Akl EA. Duration of anticoagulant therapy for deep vein thrombosis and pulmonary embolism. Blood. 2014;123(12):1794–801.

    CrossRef  CAS  PubMed  Google Scholar 

  47. DeLoughery EP, Shatzel JJ. A comparative analysis of the safety profile of direct oral anticoagulants using the FDA adverse event reporting system. Eur J Haematol. 2019 May;103(1):ejh.13240.

    CrossRef  Google Scholar 

  48. Shah R, Patel MR. Primary and key secondary results from the ROCKET AF trial, and their implications on clinical practice. Ther Adv Cardiovasc Dis. 2017;11(3):105–20.

    CrossRef  CAS  PubMed  Google Scholar 

  49. Camm AJ, Bounameaux H. Edoxaban: a new oral direct factor xa inhibitor. Drugs. 2011;71(12):1503–26.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Stacy ZA, Call WB, Hartmann AP, Peters GL, Richter SK. Edoxaban: a comprehensive review of the pharmacology and clinical data for the Management of Atrial Fibrillation and Venous Thromboembolism. Cardiol Ther. 2016;5(1):1–18.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Zelniker TA, Ruff CT, Wiviott SD, Blanc J-J, Cappato R, Nordio F, et al. Edoxaban in atrial fibrillation patients with established coronary artery disease: insights from ENGAGE AF-TIMI 48. Eur Hear J Acute Cardiovasc care. 2019;8(2):176–85.

    CrossRef  Google Scholar 

  52. Connolly SJ, Eikelboom J, Dorian P, Hohnloser SH, Gretler DD, Sinha U, et al. Betrixaban compared with warfarin in patients with atrial fibrillation: results of a phase 2, randomized, dose-ranging study (Explore-Xa). Eur Heart J. 2013;34(20):1498–505.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  53. Skelley JW, Thomason AR, Nolen JC, Candidate P. Betrixaban (Bevyxxa): a direct-acting Oral anticoagulant factor Xa inhibitor. P T. 2018;43(2):85–120.

    PubMed  PubMed Central  Google Scholar 

  54. Turpie AG, Gallus AS, Hoek JA. A synthetic pentasaccharide for the prevention of deep-vein thrombosis after total hip replacement. N Engl J Med. 2001;344(9):619–25.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Parody R, Oliver A, Souto JC, Fontcuberta J. Fondaparinux (ARIXTRA) as an alternative anti-thrombotic prophylaxis when there is hypersensitivity to low molecular weight and unfractionated heparins. Haematologica. 2003;88(11):ECR32.

    PubMed  Google Scholar 

  56. Lagrange F, Vergnes C, Brun JL, Paolucci F, Nadal T, Leng JJ, et al. Absence of placental transfer of pentasaccharide (Fondaparinux, Arixtra) in the dually perfused human cotyledon in vitro. Thromb Haemost. 2002;87(5):831–5.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Halton JML, Lehr T, Cronin L, Lobmeyer MT, Haertter S, Belletrutti M, et al. Safety, tolerability and clinical pharmacology of dabigatran etexilate in adolescents. Thromb Haemost. 2016;116(09):461–71.

    CrossRef  PubMed  Google Scholar 

  58. Eriksson B, Dahl O, Huo M, Kurth A, Hantel S, Hermansson K, et al. Oral dabigatran versus enoxaparin for thromboprophylaxis after primary total hip arthroplasty (RE-NOVATE II). Thromb Haemost. 2011;105(04):721–9.

    CrossRef  CAS  PubMed  Google Scholar 

  59. Campbell HA, Link KP. Studies on the hemorrhagic sweet clover disease. IV. The isolation and crystallization of the hemorrhagic agent. J Biol Chem. 1941;138(1):21–33.

    CrossRef  CAS  Google Scholar 

  60. Chan H-T, So L-T, Li S-W, Siu C-W, Lau C-P, Tse H-F. Effect of herbal consumption on time in therapeutic range of warfarin therapy in patients with atrial fibrillation. J Cardiovasc Pharmacol. 2011;58(1):87–90.

    CrossRef  CAS  PubMed  Google Scholar 

  61. Wells PS, Prins MH, Levitan B, Beyer-Westendorf J, Brighton TA, Bounameaux H, et al. Long-term anticoagulation with rivaroxaban for preventing recurrent VTE: a benefit-risk analysis of EINSTEIN-extension. Chest. 2016;150(5):1059–68.

    CrossRef  PubMed  Google Scholar 

  62. Lippi G, Favaloro E, Mattiuzzi C. Combined Administration of Antibiotics and Direct Oral Anticoagulants: a renewed indication for laboratory monitoring? Semin Thromb Hemost. 2014;40(07):756–65.

    CrossRef  CAS  PubMed  Google Scholar 

  63. Glueck CJ, Khalil Q, Winiarska M, Wang P. Interaction of duloxetine and warfarin causing severe elevation of international normalized ratio. JAMA. 2006;295(13):1517–8.

    CrossRef  CAS  PubMed  Google Scholar 

  64. Gurbel PA, Fox KAA, Tantry US, Ten Cate H, Weitz JI. Combination antiplatelet and Oral anticoagulant therapy in patients with coronary and peripheral artery disease. Circulation. 2019;139(18):2170–85.

    CrossRef  CAS  PubMed  Google Scholar 

  65. Turrentine MA, Braems G, Ramirez MM. Use of thrombolytics for the treatment of thromboembolic disease during pregnancy. Obstet Gynecol Surv. 1995;50(7):534–41.

    CrossRef  CAS  PubMed  Google Scholar 

  66. Lexicomp. Heparin (unfractionated): Drug information. UpToDate. 2019. p. N/A.

    Google Scholar 

  67. Hull, RD, Garcia, DA, Burnett AE. Heparin and LMW heparin: dosing and adverse effects. UpToDate. 2019. p. N/A.

    Google Scholar 

  68. Di Minno A, Frigerio B, Spadarella G, Ravani A, Sansaro D, Amato M, et al. Old and new oral anticoagulants: food, herbal medicines and drug interactions. Blood Rev. 2017;31:193–203.

    CrossRef  PubMed  CAS  Google Scholar 

  69. Sayal KS, Duncan-McConnell DA, McConnell HW, Taylor DM. Psychotropic interactions with warfarin. Acta Psychiatr Scand. 2000;102(4):250–5.

    CrossRef  CAS  PubMed  Google Scholar 

  70. Chew DP, Bhatt DL, Kimball W, Henry TD, Berger P, McCullough PA, et al. Bivalirudin provides increasing benefit with decreasing renal function: a meta-analysis of randomized trials. Am J Cardiol. 2003;92(8):919–23.

    CrossRef  CAS  PubMed  Google Scholar 

  71. Koster A, Faraoni D, Levy JH. Argatroban and Bivalirudin for perioperative anticoagulation in cardiac surgery. Anesthesiology. 2018;128(2):390–400.

    CrossRef  PubMed  Google Scholar 

  72. Di Nisio M, Middeldorp S, Büller HR. Direct thrombin inhibitors. N Engl J Med. 2005;353(10):1028–40. [Internet] [cited 2016 Dec 14]. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMra044440

    CrossRef  PubMed  Google Scholar 

  73. Swan SK, Hursting MJ. The pharmacokinetics and pharmacodynamics of argatroban: effects of age, gender, and hepatic or renal dysfunction. Pharmacotherapy. 2000;20(3):318–29.

    CrossRef  CAS  PubMed  Google Scholar 

  74. Young G, Yonekawa KE, Nakagawa PA, Blain RC, Lovejoy AE, Nugent DJ. Recombinant activated factor VII effectively reverses the anticoagulant effects of heparin, enoxaparin, fondaparinux, argatroban, and bivalirudin ex vivo as measured using thromboelastography. Blood Coagul Fibrinolysis. 2007;18(6):547–53.

    CrossRef  CAS  PubMed  Google Scholar 

  75. Carroll RC, Chavez JJ, Simmons JW, Snider CC, Wortham DC, Bresee SJ, et al. Measurement of patients’ bivalirudin plasma levels by a thrombelastograph ecarin clotting time assay: a comparison to a standard activated clotting time. Anesth Analg. 2006;102(5):1316–9.

    CrossRef  CAS  PubMed  Google Scholar 

  76. Teles JS, Fukuda EY, Feder D. Warfarin: pharmacological profile and drug interactions with antidepressants. Einstein (Sao Paulo). 2012;10(1):110–5.

    CrossRef  Google Scholar 

  77. Saleh MI, Alzubiedi S. Dosage individualization of warfarin using artificial neural networks. Mol Diagn Ther. 2014;18(3):371–9.

    CrossRef  CAS  PubMed  Google Scholar 

  78. Hull R, D. Garcia, David A, Vazquez SR. Warfarin and other VKAs: dosing and adverse effects. UpToDate. 2019. p. N/A.

    Google Scholar 

  79. So CH, Eckman MH. Combined aspirin and anticoagulant therapy in patients with atrial fibrillation. J Thromb Thrombolysis. 2017;43(1):7–17.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roughead EE, Kalisch LM, Barratt JD, Gilbert AL. Prevalence of potentially hazardous drug interactions amongst Australian veterans. Br J Clin Pharmacol. 2010;70(2):252–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Moore N, Pollack C, Butkerait P. Adverse drug reactions and drug–drug interactions with over-the-counter NSAIDs. Ther Clin Risk Manag. 2015;11:1061.

    PubMed  PubMed Central  Google Scholar 

  82. Holm J, Lindh JD, Andersson ML, Mannheimer B. The effect of amiodarone on warfarin anticoagulation: a register-based nationwide cohort study involving the Swedish population. J Thromb Haemost. 2017;15(3):446–53.

    CrossRef  CAS  PubMed  Google Scholar 

  83. Sanoski CA, Bauman JL. Clinical observations with the amiodarone/warfarin interaction: dosing relationships with long-term therapy. Chest. 2002;121(1):19–23.

    CrossRef  CAS  PubMed  Google Scholar 

  84. Carpenter M, Berry H, Pelletier AL. Clinically relevant drug-drug interactions in primary care. Am Fam Physician. 2019;99(9):558–64.

    PubMed  Google Scholar 

  85. Lam J, Gomes T, Juurlink DN, Mamdani MM, Pullenayegum EM, Kearon C, et al. Hospitalization for hemorrhage among warfarin recipients prescribed amiodarone. Am J Cardiol. 2013;112(3):420–3.

    CrossRef  PubMed  Google Scholar 

  86. Miller KE. Amiodarone and warfarin interaction. Am Fam Physician. 2002;65(8):1669–70.

    Google Scholar 

  87. Fischer HD, Juurlink DN, Mamdani MM, Kopp A, Laupacis A. Hemorrhage during warfarin therapy associated with cotrimoxazole and other urinary tract anti-infective agents: a population-based study. Arch Intern Med. 2010;170(7):617–21.

    CrossRef  CAS  PubMed  Google Scholar 

  88. Lane MA, Devine ST, McDonald JR. High-risk antimicrobial prescriptions among ambulatory patients on warfarin. J Clin Pharm Ther. 2012;37(2):157–60.

    CrossRef  CAS  PubMed  Google Scholar 

  89. Ellis RJ, Mayo MS, Bodensteiner DM. Ciprofloxacin-warfarin coagulopathy: a case series. Am J Hematol. 2000;63(1):28–31.

    CrossRef  CAS  PubMed  Google Scholar 

  90. Lane MA, Zeringue A, McDonald JR. Serious bleeding events due to warfarin and antibiotic co-prescription in a cohort of veterans. Am J Med. 2014;127(7):657–63. e2

    CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Phillips S, Barr A, Wilson E, Rockall TASJF. Two cases of retroperitoneal haematoma caused by interaction between antibiotics and warfarin. Emerg Med J. 2006;23(1):e08.

    CrossRef  Google Scholar 

  92. Al-Jundi W, Rubin N. Cardiac tamponade secondary to haemopericardium in a patient on warfarin. BMJ Case Rep. 2010;2010.

    Google Scholar 

  93. Poon M, Moffett BS, Yee DL. Warfarin-Rifampin drug interaction in a Pediatric patient. J Pediatr Pharmacol Ther: JPPT Off J PPAG United States. 2017;22:375–7.

    Google Scholar 

  94. Holt RK, Anderson EA, Cantrell MA, Shaw RF, Egge JA. Preemptive dose reduction of warfarin in patients initiating metronidazole. Drug Metabol Drug Interact. 2010;25(1–4):35–9.

    CAS  PubMed  Google Scholar 

  95. Fischer HD. ACP journal Club: concomitant use of warfarin and cotrimoxazole or ciprofloxacin increased risk for admission for upper GI hemorrhage. Ann Intern Med. 2010;153(6):JC3–13.

    CAS  PubMed  Google Scholar 

  96. Hale SF, Lesar TS. Interaction of vitamin K antagonists and trimethoprim-sulfamethoxazole: ignore at your patient’s risk. Drug Metabol Drug Interact. 2014;29(1):53–60.

    CrossRef  CAS  PubMed  Google Scholar 

  97. Ahmed A, Stephens JC, Kaus CA, Fay WP. Impact of preemptive warfarin dose reduction on anticoagulation after initiation of trimethoprim-sulfamethoxazole or levofloxacin. J Thromb Thrombolysis. 2008;26(1):44–8.

    CrossRef  CAS  PubMed  Google Scholar 

  98. Shaik AN, Bohnert T, Williams DA, Gan LL, LeDuc BW. Mechanism of drug-drug interactions between warfarin and statins. J Pharm Sci. 2016;105(6):1976–86.

    CrossRef  CAS  PubMed  Google Scholar 

  99. Schelleman H, Bilker WB, Brensinger CM, Wan F, Yang Y-X, Hennessy S. Fibrate/statin initiation in warfarin users and gastrointestinal bleeding risk. Am J Med. 2010;123(2):151–7.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mackay JW, Fenech ME, Myint KS. Acute rhabdomyolysis caused by combination therapy with atorvastatin and warfarin. Br J Hosp Med (Lond). 2012;73(2):106–7.

    CrossRef  CAS  Google Scholar 

  101. Mannheimer B, Andersson ML, Jarnbert-Pettersson H, Lindh JD. The effect of carbamazepine on warfarin anticoagulation: a register-based nationwide cohort study involving the Swedish population. J Thromb Haemost. 2016;14(4):765–71.

    CrossRef  CAS  PubMed  Google Scholar 

  102. Clark NP, Hoang K, Delate T, Horn JR, Witt DM. Warfarin interaction with hepatic cytochrome P-450 enzyme-inducing anticonvulsants. Clin Appl Thromb Hemost. 2018;24(1):172–8.

    CrossRef  CAS  PubMed  Google Scholar 

  103. Dong Y-H, Bykov K, Choudhry NK, Donneyong MM, Huybrechts KF, Levin R, et al. Clinical outcomes of concomitant use of warfarin and selective serotonin reuptake inhibitors. J Clin Psychopharmacol. 2017;37(2):200–9.

    CrossRef  CAS  PubMed  Google Scholar 

  104. Quinn GR, Singer DE, Chang Y, Go AS, Borowsky LH, Udaltsova N, et al. Effect of selective serotonin reuptake inhibitors on bleeding risk in patients with atrial fibrillation taking warfarin. Am J Cardiol. 2014;114(4):583–6.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hackam DG, Mrkobrada M. Selective serotonin reuptake inhibitors and brain hemorrhage: a meta-analysis. Neurology. 2012;79(18):1862–5.

    CrossRef  CAS  PubMed  Google Scholar 

  106. Sansone RA, Sansone LA. Warfarin and antidepressants: happiness without Hemorrhaging. Psychiatry (Edgmont). 2009;6(7):24–9.

    Google Scholar 

  107. Lexicomp® Drug Interactions - UpToDate. vitamin K Antagonists / Itraconazole. UpToDate. 2019.

    Google Scholar 

  108. Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull. 2005;28(9):1805–8.

    CrossRef  CAS  PubMed  Google Scholar 

  109. Lexicomp® Drug Interactions - UpToDate. vitamin K Antagonists / Fluconazole. UpToDate. 2019.

    Google Scholar 

  110. Pendlimari R, Anaparthy R, Sugumar A. Drug interaction presenting as acute abdomen. World J Gastrointest Pharmacol Ther. 2010;1(1):40–2.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  111. Hellfritzsch M, Pottegard A, Pedersen AJT, Burghle A, Mouaanaki F, Hallas J, et al. Topical Antimycotics for Oral candidiasis in warfarin users. Basic Clin Pharmacol Toxicol. 2017;120(4):368–72.

    CrossRef  CAS  PubMed  Google Scholar 

  112. Purkins L, Wood N, Kleinermans D, Nichols D. Voriconazole potentiates warfarin-induced prothrombin time prolongation. Br J Clin Pharmacol. 2003;56(Suppl 1):24–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dekhuijzen PNR, Koopmans PP. Pharmacokinetic profile of zafirlukast. Clin Pharmacokinet. 2002;41(2):105–14.

    CrossRef  PubMed  Google Scholar 

  114. U.S. Food and Drug Administration. Accolate - zafirlukast. 2009. p. 1–9.

    Google Scholar 

  115. Liedtke MD, Rathbun RC. Warfarin-antiretroviral interactions. Ann Pharmacother. 2009;43(2):322–8.

    CrossRef  CAS  PubMed  Google Scholar 

  116. Stading JA, Chock A, Faulkner MA, Skrabal MZ. Effects of prednisone on the international normalized ratio. Am J Health Syst Pharm. 2006;63(23):2354–6.

    CrossRef  CAS  PubMed  Google Scholar 

  117. Dowd MB, Vavra KA, Witt DM, Delate T, Martinez K. Empiric warfarin dose adjustment with prednisone therapy. A randomized, controlled trial. J Thromb Thrombolysis. 2011;31(4):472–7.

    CrossRef  CAS  PubMed  Google Scholar 

  118. Yıldırım F, Kara İ, Bilaloğlu B, Erbaş G, Türkoglu M, Aygencel G. A rare complication with the concomitant use of warfarin and nonsteroidal anti-inflammatory drugs: Hemoperitoneum and intramural small bowel hematoma. Iran J Med Sci. 2016;41(4):359–60.

    PubMed  Google Scholar 

  119. Tsai H-H, Lin H-W, Simon Pickard A, Tsai H-Y, Mahady GB. Evaluation of documented drug interactions and contraindications associated with herbs and dietary supplements: a systematic literature review. Int J Clin Pract. 2012;66(11):1056–78.

    CrossRef  CAS  PubMed  Google Scholar 

  120. Markowitz JS, Donovan JL, DeVane CL, Taylor RM, Ruan Y, Wang J-S, et al. Effect of St John’s Wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA. 2003;290(11):1500.

    CrossRef  CAS  PubMed  Google Scholar 

  121. Greenblatt DJ, von Moltke LL. Interaction of warfarin with drugs, natural substances, and foods. J Clin Pharmacol. 2005;45(2):127–32.

    CrossRef  CAS  PubMed  Google Scholar 

  122. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29(1):17–24. [Internet]. [cited 2019 Oct 24]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25294122

    CrossRef  CAS  PubMed  Google Scholar 

  123. Székely A, Lex DJ. Antifibrinolytics. Hear lung Vessel. 2014;6(1):5–7. [Internet]. [cited 2019 Oct 24] Available from: http://www.ncbi.nlm.nih.gov/pubmed/24800192

    Google Scholar 

  124. Fergusson DA, Hébert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358(22):2319–31.

    CrossRef  CAS  PubMed  Google Scholar 

  125. Koster A, Faraoni D, Levy JH. Antifibrinolytic therapy for cardiac surgery: an update. Anesthesiology. 2015;123:214–21. Lippincott Williams and Wilkins

    CrossRef  CAS  PubMed  Google Scholar 

  126. Ng W, Jerath A, Wąsowicz M. Tranexamic acid: a clinical review. Anaesthesiol Intensive Ther. 2015;47(4):339–50. [Internet]. [cited 2019 Oct 24] Available from: http://www.ncbi.nlm.nih.gov/pubmed/25797505

    CrossRef  PubMed  Google Scholar 

  127. Jimenez JJ, Iribarren JL, Lorente L, Rodriguez JM, Hernandez D, Nassar I, et al. Tranexamic acid attenuates inflammatory response in cardiopulmonary bypass surgery through blockade of fibrinolysis: a case control study followed by a randomized double-blind controlled trial. Crit Care. 2007;11(6):R117. [Internet]. [cited 2019 Oct 24]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/17988379

    CrossRef  PubMed  PubMed Central  Google Scholar 

  128. Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ (Online). 2012;344.

    Google Scholar 

  129. Shakur H, Roberts I, Fawole B, Chaudhri R, El-Sheikh M, Akintan A, et al. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389(10084):2105–16.

    CrossRef  CAS  Google Scholar 

  130. Cap AP. CRASH-3: a win for patients with traumatic brain injury. Lancet [Internet]. 2019 Oct [cited 2019 Oct 24]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673619323128.

  131. Manji RA, Grocott HP, Leake J, Ariano RE, Manji JS, Menkis AH, et al. Seizures following cardiac surgery: the impact of tranexamic acid and other risk factors. Can J Anaesth. 2012;59(1):6–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22065333. [Internet]. [cited 2019 Oct 24].

    CrossRef  PubMed  Google Scholar 

  132. Mega JL, Simon T. Pharmacology of antithrombotic drugs: an assessment of oral antiplatelet and anticoagulant treatments. Lancet. 2015;386(9990):281–91.

    CrossRef  CAS  PubMed  Google Scholar 

  133. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12(12):1063–73.

    CrossRef  CAS  PubMed  Google Scholar 

  134. O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2013;61(4):485–510.

    CrossRef  PubMed  Google Scholar 

  135. Saxena A, Balaramnavar VM, Hohlfeld T, Saxena AK. Drug/drug interaction of common NSAIDs with antiplatelet effect of aspirin in human platelets. Eur J Pharmacol. 2013;721(1–3):215–24.

    CrossRef  CAS  PubMed  Google Scholar 

  136. Strate LL, Singh P, Boylan MR, Piawah S, Cao Y, Chan AT. A prospective study of alcohol consumption and smoking and the risk of major gastrointestinal bleeding in men. PLoS One. 2016;11(11):e0165278.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  137. Li W-J, Zhang H-Y, Miao C-L, Tang R-B, DU X, Shi J-H, et al. Cigarette smoking inhibits the anti-platelet activity of aspirin in patients with coronary heart disease. Chin Med J. 2011;124(10):1569–72.

    PubMed  Google Scholar 

  138. Holmes CE, Jasielec J, Levis JE, Skelly J, Muss HB. Initiation of aspirin therapy modulates Angiogenic protein levels in women with breast cancer receiving tamoxifen therapy. Clin Transl Sci. 2013;6(5):386–90.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  139. Colwell JA, Nesto RW. The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care. 2003;26:2181–8.

    CrossRef  PubMed  Google Scholar 

  140. Lapi F, Azoulay L, Yin H, Nessim SJ, Suissa S. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case-control study. BMJ. 2013;346:e8525.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  141. Vazquez SR. Drug-drug interactions in an era of multiple anticoagulants: a focus on clinically relevant drug interactions. Hematology. 2018;2018(1):339–47.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  142. Cattaneo M. P2Y 12 receptors: structure and function. J Thromb Haemost. 2015;13:S10–6.

    CrossRef  CAS  PubMed  Google Scholar 

  143. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost. 2000;84(5):891–6.

    CrossRef  CAS  PubMed  Google Scholar 

  144. Angiolillo DJ, Gibson CM, Cheng S, Ollier C, Nicolas O, Bergougnan L, et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of Clopidogrel in healthy subjects: randomized, placebo-controlled. Crossover Comparison Studies Clin Pharmacol Ther. 2011;89(1):65–74.

    CrossRef  CAS  PubMed  Google Scholar 

  145. Sukhovershin RA, Cooke JP. How may proton pump inhibitors impair cardiovascular health? Am J Cardiovasc Drugs. 2016;16(3):153.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gurbel PA, Bliden KP, Logan DK, Kereiakes DJ, Lasseter KC, White A, et al. The influence of smoking status on the pharmacokinetics and pharmacodynamics of Clopidogrel and Prasugrel: the PARADOX study. J Am Coll Cardiol. 2013;62(6):505–12.

    CrossRef  CAS  PubMed  Google Scholar 

  147. Holmberg MT, Tornio A, Neuvonen M, Neuvonen PJ, Backman JT, Niemi M. Grapefruit juice inhibits the metabolic activation of Clopidogrel. Clin Pharmacol Ther. 2014;95(3):307–13.

    CrossRef  CAS  PubMed  Google Scholar 

  148. Delaney JA, Opatrny L, Brophy JM, Suissa S. Drug drug interactions between antithrombotic medications and the risk of gastrointestinal bleeding. CMAJ. 2007;177(4):347–51.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  149. Cattaneo M, Lecchi A. Inhibition of the platelet P2Y 12 receptor for adenosine diphosphate potentiates the antiplatelet effect of prostacyclin. J Thromb Haemost. 2007;5(3):577–82.

    CrossRef  CAS  PubMed  Google Scholar 

  150. Danielak D, Karaźniewicz-Łada M, Główka F. Assessment of the risk of Rhabdomyolysis and myopathy during concomitant treatment with Ticagrelor and statins. Drugs. 2018;78(11):1105–12.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bennett JS. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest. 2005;115(12):3363–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  152. McFadyen JD, Schaff M, Peter K. Current and future antiplatelet therapies: emphasis on preserving haemostasis. Nat Rev Cardiol. 2018;15(3):181–91.

    CrossRef  CAS  PubMed  Google Scholar 

  153. Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov. 2010;9(2):154–69.

    CrossRef  CAS  PubMed  Google Scholar 

  154. Mukherjee D, Roffi M. Glycoprotein IIb/IIIa receptor inhibitors in 2008: do they still have a role? J Interv Cardiol. 2008;21(2):118–21.

    CrossRef  PubMed  Google Scholar 

  155. Serebruany VL, Malinin AI, Eisert RM, Sane DC. Risk of bleeding complications with antiplatelet agents: meta-analysis of 338,191 patients enrolled in 50 randomized controlled trials. Am J Hematol. 2004;75(1):40–7.

    CrossRef  CAS  PubMed  Google Scholar 

  156. PLETAL. (PLAY-tal) (cilostazol) (sil-OS-tah-zol) Tablets.

    Google Scholar 

  157. Mader TJ. Adenosine: adverse interactions. Ann Emerg Med. 1992;21(4):453.

    CrossRef  CAS  PubMed  Google Scholar 

  158. Huang W, Xin G, Wei Z, Ji C, Zheng H, Gu J, et al. Metformin uniquely prevents thrombosis by inhibiting platelet activation and mtDNA release. Sci Rep. 2016;6:36222.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  159. Li XL, Steiner M. Fish oil: a potent inhibitor of platelet adhesiveness. Blood. 1990;76(5):938–45.

    CrossRef  CAS  PubMed  Google Scholar 

  160. Morriss R. Antidepressants are associated with hospital admitted intracranial bleeds in people taking other medication associated with bleeding. Evid Based Ment Health. 2016;19(1):24.

    CrossRef  PubMed  Google Scholar 

  161. Dehmer SP, Maciosek MV, Flottemesch TJ. Aspirin use to prevent cardiovascular disease and colorectal cancer. Aspirin use to prevent cardiovascular disease and colorectal cancer: a decision analysis: technical report. 2015.

    Google Scholar 

  162. Pratt LA, Brody DJ, Gu Q. Antidepressant use among persons aged 12 and over:United States,2011–2014. NCHS Data Brief. 2017;283:1–8.

    Google Scholar 

  163. Antifibrinolytic Drugs. In: Encyclopedia of molecular Pharmacology. Springer; 2008. p. 130. https://doi.org/10.1007/978-3-540-38918-7.

  164. Ker K, Roberts I, Shakur H, Coats T. Antifibrinolytic drugs for acute traumatic injury. Sao Paulo Med J. 2015;129(5):CD004896.

    Google Scholar 

  165. Hobbs JC, Welsby IJ, Green CL, Dhakal IB, Wellman SS. Epsilon aminocaproic acid to reduce blood loss and transfusion after total hip and total knee arthroplasty. J Arthroplast. 2018;33(1):55–60.

    CrossRef  Google Scholar 

  166. Furuta T, Sugimoto M, Kodaira C, Nishino M, Yamade M, Uotani T, Sahara S, et al. Influence of low-dose proton pump inhibitors on anti-platelet function of clopidogrel. Gastroenterology. 2012;142:S215.

    CrossRef  Google Scholar 

  167. Ponomaryov T, Payne H, Fabritz L, Wagner DD, Brill A. Mast cells granular contents are crucial for deep vein thrombosis in mice. Circ Res. 2017;121(8):941–50.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan David Kaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shelvan, A. et al. (2021). Commonly Prescribed Medications that Affect Clotting: A Comprehensive Overview. In: Scher, C.S., Kaye, A.D., Liu, H., Perelman, S., Leavitt, S. (eds) Essentials of Blood Product Management in Anesthesia Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-59295-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59295-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59294-3

  • Online ISBN: 978-3-030-59295-0

  • eBook Packages: MedicineMedicine (R0)