Skip to main content

Dynamic Functional Connectivity Captures Individuals’ Unique Brain Signatures

  • Conference paper
  • First Online:
Brain Informatics (BI 2020)

Abstract

Recent neuroimaging evidence suggest that there exists a unique individual-specific functional connectivity (FC) pattern consistent across tasks. The objective of our study is to utilize FC patterns to identify an individual using a supervised machine learning approach. To this end, we use two previously published data sets that comprises resting-state and task-based fMRI responses. We use static FC measures as input to a linear classifier to evaluate its performance. We additionally extend this analysis to capture dynamic FC using two approaches: the common sliding window approach and the more recent phase synchrony-based measure. We found that the classification models using dynamic FC patterns as input outperform their static analysis counterpart by a significant margin for both data sets. Furthermore, sliding window-based analysis proved to capture more individual-specific brain connectivity patterns than phase synchrony measures for resting-state data while the reverse pattern was observed for the task-based data set. Upon investigating the effects of feature reduction, we found that feature elimination significantly improved results upto a point with near-perfect classification accuracy for the task-based data set while a gradual decrease in the accuracy was observed for resting-state data set. The implications of these findings are discussed. The results we have are promising and present a novel direction to investigate further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Botvinik-Nezer, R., Holzmeister, F., Camerer, C.F., et al.: Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582, 84–88 (2020). https://doi.org/10.1038/s41586-020-2314-9

    Article  Google Scholar 

  2. Elliott, M.L., et al.: What is the test-retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychol. Sci. (2020). https://doi.org/10.1177/0956797620916786

  3. Gratton, C., Laumann, T.O., Nielsen, A.N., et al.: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98(2), 439–452.e5 (2018). https://doi.org/10.1016/j.neuron.2018.03.035

    Article  Google Scholar 

  4. Biswal, B., Zerrin Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Resona. Med. 34(4), 537–541 (1995). https://doi.org/10.1002/mrm.1910340409

    Article  Google Scholar 

  5. Hutchison, R.M., et al.: Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80, 360–378 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.079

    Article  Google Scholar 

  6. Glerean, E., Salmi, J., Lahnakoski, J.M., Jääskeläinen, I.P., Sams, M.: Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect. 91–101 (2012). https://doi.org/10.1089/brain.2011.0068

  7. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., Malach, R.: Intersubject synchronization of cortical activity during natural vision. Science 303(5664), 1634–1640 (2004). https://doi.org/10.1126/science.1089506

    Article  Google Scholar 

  8. Alluri, V., Toiviainen, P., Jääskeläinen, I.P., Glerean, E., Sams, M., Brattico, E.: Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. Neuroimage 59(4), 3677–3689 (2012). https://doi.org/10.1016/j.neuroimage.2011.11.019

    Article  Google Scholar 

  9. Yeo, B.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)

    Article  Google Scholar 

  10. Omidvarnia, A., Pedersen, M., Walz, J.M., Vaughan, D.N., Abbott, D.F., Jackson, G.D.: Dynamic regional phase synchrony (DRePS). Hum. Brain Mapp. 37, 1970–1985 (2016). https://doi.org/10.1002/hbm.23151

    Article  Google Scholar 

  11. Pedersen, M., Omidvarnia, A., Zalesky, A., Jackson, G.D.: On the relationship between instantaneous phase synchrony and correlation-based sliding windows for time-resolved fMRI connectivity analysis. Neuroimage 181, 85–94 (2018). https://doi.org/10.1016/j.neuroimage.2018.06.020

    Article  Google Scholar 

  12. Burunat, I., Brattico, E., Puoliväli, T., Ristaniemi, T., Sams, M., Toiviainen, P.: Action in perception: prominent visuo-motor functional symmetry in musicians during music listening. PLoS ONE 10(9), e0138238 (2015). https://doi.org/10.1371/journal.pone.0138238

    Article  Google Scholar 

  13. Alluri, V., Toiviainen, P., Burunat, I., Kliuchko, M., Vuust, P., Brattico, E.: Connectivity patterns during music listening: evidence for action-based processing in musicians. Hum Brain Mapp. 38(6), 2955–2970 (2017). https://doi.org/10.1002/hbm.23565

    Article  Google Scholar 

  14. Van Essen, D.C., et al.: The WU-Minn Human Connectome Project: an overview. NeuroImage 80(2013), 62–79 (2013)

    Article  Google Scholar 

  15. GlasserGlasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Snee, R.: Who Invented the Variance Inflation Factor? (1981). https://doi.org/10.13140/RG.2.1.3274.8562

  18. Alluri, V., et al.: From Vivaldi to Beatles and back: predicting brain responses to music. Neuroimage 83, 627–636 (2013). https://doi.org/10.1016/j.neuroimage.2013.06.064

    Article  Google Scholar 

  19. Niranjan, D., Burunat, I., Toiviainen, P., Brattico, E., Alluri, V.: Influence of musical expertise on the processing of musical features in a naturalistic setting. In: 2019 Conference on Cognitive Computational Neuroscience. https://doi.org/10.32470/CCN.2019.1314-0

  20. Human Connectome Project Homepage. http://www.humanconnectomeproject.org. Accessed 15 Jun 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan Gandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gandhi, R., Garimella, A., Toiviainen, P., Alluri, V. (2020). Dynamic Functional Connectivity Captures Individuals’ Unique Brain Signatures. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds) Brain Informatics. BI 2020. Lecture Notes in Computer Science(), vol 12241. Springer, Cham. https://doi.org/10.1007/978-3-030-59277-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59277-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59276-9

  • Online ISBN: 978-3-030-59277-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics