Skip to main content

COVID-19 and Vulnerable Populations in Sub-Saharan Africa

Part of the Advances in Experimental Medicine and Biology book series (PMISB,volume 1321)

Abstract

The novel corona virus 2019 (COVID-19) outbreak which started in Hubei province in China has now spread to every corner of the earth. While the pandemic started later in Africa, it is now found in all African countries to varying degrees. It is thought that the prevalence and severity of disease is influenced by a number of non-communicable diseases (NCDs) which are all becoming increasingly prevalent in sub-Saharan Africa (SSA). In addition, SSA bears the major burden of human immunodeficiency virus (HIV) and tuberculosis (TB) infections. While data from Europe and the United States show that children are spared severe disease, it is uncertain if the same holds true in SSA where children suffer from sickle cell disease and malnutrition in addition to other infectious diseases. There is limited data from Africa on the effects of these conditions on COVID-19. In this review, we discuss the epidemiology of some of these conditions in Africa and the possible pathogenesis for the interactions of these with COVID-19.

Keywords

  • COVID-19
  • SARS-CoV-2
  • Risk factors
  • Obesity
  • Diabetes
  • Hypertension
  • Kidney disease
  • HIV tuberculosis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-59261-5_13
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-59261-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 13.1

References

  1. WHO (2020) Rolling updates on Corona Virus disease. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen. Accessed 30 June 2020

  2. Adepoju P (2020) Nigeria responds to COVID-19; first case detected in sub-Saharan Africa. Nat Med 26:444–448

    CAS  PubMed  CrossRef  Google Scholar 

  3. Worldometer Coronavirus update. https://www.worldometers.info/coronavirus

  4. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y et al (2020) Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 146(1):110–118

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  5. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L et al (2020) Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 109(5):531–538

    CAS  PubMed  CrossRef  Google Scholar 

  6. Cyrus E, Clarke R, Hadley D, Bursac Z, Trepka MJ, Dévieux JG et al (2020) The impact of COVID-19 on African American communities in the United States. medRxiv. https://doi.org/10.1101/2020.05.15.20096552

  7. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L et al (2020) Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: prospective observational cohort study. BMJ 369:m1985. https://doi.org/10.1136/bmj.m1985

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. UN (2019) World population prospects 2019: data booklet. Accessed 30 June 2020

    Google Scholar 

  9. Velkoff VA, Kowal PR (2006) Aging in Sub-Saharan Africa: the changing demography of the region. In: Cohen B, Menken J (eds) Aging in Sub-Saharan Africa. National Academies Press, Washigton DC. ISBN: 0-309-010281-2

    Google Scholar 

  10. Amuyunzu-Nyamongo M (2010) Need for a multi-factorial, multi-sectorial and multi-disciplinary approach to NCD prevention and control in Africa. Glob Health Promot 17(2 Suppl):31–32

    PubMed  CrossRef  Google Scholar 

  11. Gouda HN, Charlson F, Sorsdahl K, Ahmadzada S, Ferrari AJ, Erskine H et al (2019) Burden of non-communicable diseases in sub-Saharan Africa, 1990–2017: results from the Global Burden of Disease Study 2017. Lancet Glob Health 7(10):e1375–e1387. https://doi.org/10.1016/S2214-109X(19)30374-2

    CrossRef  PubMed  Google Scholar 

  12. NICD (2020) An update on the novel coronavirus disease 2019 outbreak, South Africa. Communicable Diseases Communiqué. April 2020, Vol. 19(4).NICD Communications Unit, Johannesburg

    Google Scholar 

  13. Kengne AP, Bentham J, Zhou B, Peer N, Matsha TE, Bixby H et al (2017) Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies. Int J Epidemiol 46:1421. https://doi.org/10.1093/ije/dyx078

    CrossRef  Google Scholar 

  14. Anderson AK (2017) Prevalence of anemia, overweight/obesity, and undiagnosed hypertension and diabetes among residents of selected communities in Ghana. Int J Chronic Dis 2017:7836019. https://doi.org/10.1155/2017/7836019

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Sartorius B, Veerman LJ, Manyema M, Chola L, Hofman K (2015) Determinants of obesity and associated population attributability, South Africa: empirical evidence from a national panel survey, 2008–2012. PLoS One 10:e0130218. https://doi.org/10.1371/journal.pone.0130218

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Price AJ, Crampin AC, Amberbir A, Kayuni-Chihana N, Musicha C, Tafatatha T et al (2018) Prevalence of obesity, hypertension, and diabetes, and cascade of care in sub-Saharan Africa: a cross-sectional, population-based study in rural and urban Malawi. Lancet Diabetes Endocrinol 6(3):208–222

    PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Ramsay M, Crowther NJ, Agongo G, Ali SA, Asiki G, Boua RP et al (2018) Regional and sex-specific variation in BMI distribution in four sub-Saharan African countries: the H3Africa AWI-gen study. Glob Health Action 11(sup2):1556561. https://doi.org/10.1080/16549716.2018.1556561

    CrossRef  PubMed  Google Scholar 

  18. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A et al (2020) High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring) 28(7):1195–1199

    CAS  CrossRef  Google Scholar 

  19. Palaiodimos L, Kokkinidis DG, Li W, Karamanis D, Ognibene J, Arora S et al (2020) Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metab Clin Exp 108:154262. https://doi.org/10.1016/j.metabol.2020.154262

    CAS  CrossRef  PubMed  Google Scholar 

  20. Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F et al (2020) Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin Infect Dis 71(15):896–897

    CAS  PubMed  CrossRef  Google Scholar 

  21. Wu J, Li W, Shi X, Chen Z, Jiang B, Liu J et al (2020) Early antiviral treatment contributes to alleviate the severity and improve the prognosis of patients with novel coronavirus disease (COVID-19). J Intern Med 288(1):128–138

    CAS  PubMed  CrossRef  Google Scholar 

  22. Cai Q, Chen F, Wang T, Luo F, Liu X, Wu Q et al (2020) Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care 43(7):1392–1398

    CAS  PubMed  CrossRef  Google Scholar 

  23. Busetto L, Bettini S, Fabris R, Serra R, Dal Pra C, Maffei P et al (2020) Obesity and COVID-19: an Italian snapshot. Obesity (Silver Spring) 28:1600–1605. https://doi.org/10.1002/oby.22918. Online ahead of print

    CAS  CrossRef  Google Scholar 

  24. Denova-Gutiérrez E, Lopez-Gatell H, Alomia-Zegarra JL, López-Ridaura R, Zaragoza-Jimenez CA, Dyer-Leal DD et al (2020) The association between obesity, type 2 diabetes, and hypertension with severe COVID-19 on admission among Mexicans. Obesity (Silver Spring). https://doi.org/10.1002/oby.22946. Online ahead of print

  25. El Chaar M, King K, Galvez Lima A (2020) Are black and Hispanic persons disproportionately affected by COVID-19 because of higher obesity rates? Surg Obes Relat Dis 16:1096. https://doi.org/10.1016/j.soard.2020.04.038. Online ahead of print

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Korakas E, Ikonomidis I, Kousathana F, Balampanis K, Kountouri A, Raptis A et al (2020) Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab 319(1):E105–E109. https://doi.org/10.1152/ajpendo.00198.2020

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Green WD, Beck MA (2017) Obesity impairs the adaptive immune response to Influenza Virus. Ann Am Thorac Soc 14(Supplement_5):S406–S409

    PubMed  PubMed Central  CrossRef  Google Scholar 

  28. Maurizi G, Della Guardia L, Maurizi A, Poloni A (2018) Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J Cell Physiol 233(1):88–97

    CAS  PubMed  CrossRef  Google Scholar 

  29. Sartipy P, Loskutoff DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 100(12):7265–7270

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  30. Pieterse C, Schutte R, Schutte AE (2015) Leptin links with plasminogen activator inhibitor-1 in human obesity: the SABPA study. Hypertens Res 38(7):507–512

    CAS  PubMed  CrossRef  Google Scholar 

  31. Frydrych LM, Bian G, O’Lone DE, Ward PA, Delano MJ (2018) Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. J Leukoc Biol 104(3):525–534

    CAS  PubMed  CrossRef  Google Scholar 

  32. Dixon AE, Peters U (2018) The effect of obesity on lung function. Expert Rev Respir Med 12(9):755–767

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K et al (2016) Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation 134(6):441–450

    PubMed  PubMed Central  CrossRef  Google Scholar 

  34. Nulu S, Aronow WS, Frishman WH (2016) Hypertension in Sub-Saharan Africa: a contextual view of patterns of disease, best management, and systems issues. Cardiol Rev 24(1):30–40

    PubMed  CrossRef  Google Scholar 

  35. Emami A, Javanmardi F, Pirbonyeh N, Akbari A (2020) Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Arch Acad Emerg Med 8:e35

    PubMed  PubMed Central  Google Scholar 

  36. Pranata R, Lim MA, Huang I, Raharjo SB, Lukito AA (2020) Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: a systematic review, meta-analysis and meta-regression. J Renin-Angiotensin-Aldosterone Syst 21(2):1470320320926899. https://doi.org/10.1177/1470320320926899

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Caillon A, Schiffrin EL (2016) Role of inflammation and immunity in hypertension: Recent epidemiological, laboratory, and clinical evidence. Curr Hypertens Rep 8(3):21. https://doi.org/10.1007/s11906-016-0628-7

    CAS  CrossRef  Google Scholar 

  38. Rodriguez-Iturbe B, Pons H, Johnson RJ (2017) Role of the immune system in hypertension. Physiol Rev 97(3):1127–1164

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Danser AHJ, Epstein M, Batlle D (2020) Renin-Angiotensin system blockers and the COVID-19 Pandemic: at present there is no evidence to abandon Renin-Angiotensin system blockers. Hypertension 75(6):1382–1385

    CAS  PubMed  CrossRef  Google Scholar 

  40. Khera R, Clark C, Lu Y, Guo Y, Ren S, Truax B et al (2020) Association of Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers with the risk of hospitalization and death in hypertensive patients with Coronavirus Disease-19. medRxiv. https://doi.org/10.1101/2020.05.17.20104943

  41. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G (2020) Renin-Angiotensin-aldosterone system blockers and the risk of Covid-19. N Engl J Med 382(25):2431–2440

    CAS  PubMed  CrossRef  Google Scholar 

  42. Yang G, Tan Z, Zhou L, Yang M, Peng L, Liu J et al (2020) Effects of Angiotensin II receptor blockers and ACE (Angiotensin-Converting Enzyme) inhibitors on virus infection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension: a single-center retrospective study. Hypertension 76(1):51–58

    CAS  PubMed  CrossRef  Google Scholar 

  43. Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB et al (2020) Renin-Angiotensin-aldosterone system inhibitors and risk of Covid-19. N Engl J Med 382(25):2441–2448

    CAS  PubMed  CrossRef  Google Scholar 

  44. Ataklte F, Erqou S, Kaptoge S, Taye B, Echouffo-Tcheugui JB, Kengne AP (2015) Burden of undiagnosed hypertension in Sub-Saharan Africa: a systematic review and meta-analysis. Hypertension 65(2):291–298

    CAS  PubMed  CrossRef  Google Scholar 

  45. Caballero AE, Ceriello A, Misra A, Aschner P, McDonnell ME, Hassanein M et al (2020) COVID-19 in people living with diabetes: an international consensus. J Diabetes Complicat 34:107671. https://doi.org/10.1016/j.jdiacomp.2020.107671. Online ahead of print

    CAS  CrossRef  Google Scholar 

  46. Mbanya JC, Motala AA, Sobngwi E, Assah FK, Enoru ST (2010) Diabetes in sub-Saharan Africa. Lancet 375(9733):2254–2266

    PubMed  CrossRef  Google Scholar 

  47. Singh AK, Gupta R, Ghosh A, Misra A (2020) Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr 14(4):303–310

    PubMed  PubMed Central  CrossRef  Google Scholar 

  48. Allard R, Leclerc P, Tremblay C, Tannenbaum TN (2010) Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care 33(7):1491–1493

    PubMed  PubMed Central  CrossRef  Google Scholar 

  49. Hussain A, Bhowmik B, do Vale Moreira NC (2020) COVID-19 and diabetes: knowledge in progress. Diabetes Res Clin Pract 162:108142. https://doi.org/10.1016/j.diabres.2020.108142

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Shang J, Wang Q, Zhang H, Wang X, Wan J, Yan Y et al (2020) The relationship between diabetes mellitus and COVID-19 prognosis: a retrospective cohort study in Wuhan, China. Am J Med:S0002-9343(20)30532-5 https://doi.org/10.1016/j.amjmed.2020.05.033. Online ahead of print

  51. Pititto BA, Ferreira SRG (2020) Diabetes and covid-19: more than the sum of two morbidities. Rev Saude Publica 54:54. https://doi.org/10.11606/s1518-8787.2020054002577

    CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Zamparini J, Venturas J, Shaddock E, Edgar J, Naidoo V, Mahomed A et al (2020) Clinical characteristics of the first 100 COVID-19 patients admitted to a tertiary hospital in Johannesburg, South Africa. Wits J Clin Med 2:105. https://doi.org/10.18772/26180197.2020

    CrossRef  Google Scholar 

  53. Rubino F, Amiel SA, Zimmet P, Alberti G, Bornstein S, Eckel RH et al (2020) New-onset diabetes in Covid-19. N Engl J Med 383:789. https://doi.org/10.1056/NEJMc2018688. Online ahead of print

    CrossRef  PubMed  Google Scholar 

  54. Gupta R, Hussain A, Misra A (2020) Diabetes and COVID-19: evidence, current status and unanswered research questions. Eur J Clin Nutr 74(6):864–870

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  55. Maddaloni E, Buzzetti R (2020) Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes Metab Res Rev: e33213321. https://doi.org/10.1002/dmrr.3321. Online ahead of print

  56. Cristelo C, Azevedo C, Marques JM, Nunes R, Sarmento B (2020) SARS-CoV-2 and diabetes: new challenges for the disease. Diabetes Res Clin Pract 164:108228. https://doi.org/10.1016/j.diabres.2020.108228

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Yang JK, Lin SS, Ji XJ, Guo LM (2010) Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 47(3):193–199

    CAS  PubMed  CrossRef  Google Scholar 

  58. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B et al (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382(9888):260–272

    PubMed  CrossRef  Google Scholar 

  59. George JA, Brandenburg J-T, Fabian J, Crowther NJ, Agongo G, Alberts M et al (2019) Kidney damage and associated risk factors in rural and urban sub-Saharan Africa (AWI-Gen): a cross-sectional population study. Lancet Glob Health 7(12):e1632–e1643

    PubMed  PubMed Central  CrossRef  Google Scholar 

  60. de Lusignan S, Dorward J, Correa A, Jones N, Akinyemi O, Amirthalingam G et al (2020) Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study. Lancet Infect Dis 20:1934. https://doi.org/10.1016/S1473-3099(20)30371-6. Online ahead of print

    CrossRef  Google Scholar 

  61. Emem-Chioma PC, Alasia DD, Wokoma FS (2012) Clinical outcomes of dialysis-treated acute kidney injury patients at the university of port harcourt teaching hospital, Nigeria. ISRN Nephrol 2013:540526. https://doi.org/10.5402/2013/540526

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Riley S, Diro E, Batchelor P, Abebe A, Amsalu A, Tadesse Y et al (2013) Renal impairment among acute hospital admissions in a rural Ethiopian hospital. Nephrology (Carlton) 18(2):92–96

    CrossRef  Google Scholar 

  63. Chen YT, Shao SC, Hsu CK, Wu IW, Hung MJ, Chen YC (2020) Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care 24(1):346. https://doi.org/10.1186/s13054-020-03009-y

    CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Yang X, Yu Y, Xu J, Shu H, Ja X, Liu H et al (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8(5):475–481

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  65. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L et al (2020) Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 97(5):829–838

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  66. Du M, Cai G, Chen F, Christiani DC, Zhang Z, Wang M (2020) Multiomics evaluation of gastrointestinal and other clinical characteristics of COVID-19. Gastroenterology 158(8):2298–2301.e7

    CAS  PubMed  CrossRef  Google Scholar 

  67. Diao B, Wang C, Wang R, Feng Z, Tan Y, Wang H et al (2020) Human kidney is a target for novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. medRxiv. https://doi.org/10.1101/2020.03.04.20031120

  68. Larsen CP, Bourne TD, Wilson JD, Saqqa O, Sharshir MA (2020) Collapsing glomerulopathy in a patient with Coronavirus Disease 2019 (COVID-19). Kidney Int Rep 5(6):935–939

    PubMed  PubMed Central  CrossRef  Google Scholar 

  69. Kissling S, Rotman S, Gerber C, Halfon M, Lamoth F, Comte D et al (2020) Collapsing glomerulopathy in a COVID-19 patient. Kidney Int 98(1):228–231

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  70. UNAIDS (2019) UNAIDS DATA 2019. https://www.unaids.org/en/resources/documents/2019/2019-UNAIDS-data. Accessed 23 July 2020

  71. Vizcarra P, Pérez-Elías MJ, Quereda C, Moreno A, Vivancos MJ, Dronda F et al (2020) Description of COVID-19 in HIV-infected individuals: a single-centre, prospective cohort. Lancet HIV 7:e554. https://doi.org/10.1016/S2352-3018(20)30164-8. Online ahead of print

    CrossRef  PubMed  PubMed Central  Google Scholar 

  72. Gervasoni C, Meraviglia P, Riva A, Giacomelli A, Oreni L, Minisci D et al (2020) Clinical features and outcomes of HIV patients with coronavirus disease 2019. Clin Infect Dis:ciaa579. https://doi.org/10.1093/cid/ciaa579. Online ahead of print

  73. Ridgway JP, Farley B, Benoit JL, Frohne C, Hazra A, Pettit N et al (2020) A case series of five people living with HIV hospitalized with COVID-19 in Chicago, Illinois. AIDS Patient Care STDs 34:331. https://doi.org/10.1089/apc.2020.0103. Online ahead of print

    CrossRef  PubMed  PubMed Central  Google Scholar 

  74. Härter G, Spinner CD, Roider J, Bickel M, Krznaric I, Grunwald S et al (2020) COVID-19 in people living with human immunodeficiency virus: a case series of 33 patients. Infection: 1–6. https://doi.org/10.1007/s15010-020-01438-z. Online ahead of print

  75. Blanco JL, Ambrosioni J, Garcia F, Martínez E, Soriano A, Mallolas J et al (2020) COVID-19 in patients with HIV: clinical case series. Lancet HIV 7(5):e314–e316

    PubMed  PubMed Central  CrossRef  Google Scholar 

  76. Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW et al (2015) Protease inhibitors targeting coronavirus and filovirus entry. Antivir Res 116:76–84

    CAS  PubMed  CrossRef  Google Scholar 

  77. Ford N, Vitoria M, Rangaraj A, Norris SL, Calmy A, Doherty M (2020) Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID-19: initial assessment. J Int AIDS Soc 23(4):e25489. https://doi.org/10.1002/jia2.25489

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  78. Mascolo S, Romanelli A, Carleo MA, Esposito V (2020) Could HIV infection alter the clinical course of SARS-CoV-2 infection? When less is better. J Med Virol 92:1777. https://doi.org/10.1002/jmv.25881. Online ahead of print

    CAS  CrossRef  PubMed  Google Scholar 

  79. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H et al (2020) Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 130(5):2620–2629

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  80. Childs K, Post FA, Norcross C, Ottaway Z, Hamlyn E, Quinn K et al (2020) Hospitalized patients with COVID-19 and HIV: a case series. Clin Infect Dis: ciaa657. doi: https://doi.org/10.1093/cid/ciaa657. Online ahead of print

  81. Cainelli F, Dzudzor B, Lanzafame M, Goushchi A, Chhem S, Vento S (2020) HIV and SARS-Coronavirus-2 epidemics: possible interactions and need for studies, especially in Africa. Front Med (Lausanne) 7:216. https://doi.org/10.3389/fmed.2020.00216

    CrossRef  Google Scholar 

  82. Suwanwongse K, Shabarek N (2020) Clinical features and outcome of HIV/SARS-CoV-2 coinfected patients in The Bronx, New York city. J Med Virol. https://doi.org/10.1002/jmv.26077. Online ahead of print

  83. Brennan AT, Jamieson L, Crowther NJ, Fox MP, George JA, Berry KM et al (2018) Prevalence, incidence, predictors, treatment, and control of hypertension among HIV-positive adults on antiretroviral treatment in public sector treatment programs in South Africa. PLoS One 13:e0204020. https://doi.org/10.1371/journal.pone.0204020

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  84. Brennan AT, Berry KM, Rosen S, Stokes A, Crowther NJ, George J et al (2019) Growth curve modelling to determine distinct BMI trajectory groups in HIV-positive adults on antiretroviral therapy in South Africa. AIDS 33(13):2049–2059

    CAS  PubMed  CrossRef  Google Scholar 

  85. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P et al (2020) Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology 296(2):E115–E117

    PubMed  CrossRef  Google Scholar 

  86. Chen Z, Li Y, Wu B, Hou Y, Bao J, Deng X (2020) A patient with COVID-19 presenting a false-negative reverse transcriptase polymerase chain reaction result. Korean J Radiol 21(5):623–624

    PubMed  PubMed Central  CrossRef  Google Scholar 

  87. WHO (2018) Tuberculosis. www.afro.who.int. Accessed 02 July 2020

  88. Tadolini M, Codecasa LR, García-García JM, Blanc FX, Borisov S, Alffenaar JW et al (2020) Active tuberculosis, sequelae and COVID-19 co-infection: first cohort of 49 cases. Eur Respir J 56(1):2001398. https://doi.org/10.1183/13993003.01398-2020

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  89. Motta I, Centis R, D’Ambrosio L, García-García JM, Goletti D, Gualano G et al (2020) Tuberculosis, COVID-19 and migrants: preliminary analysis of deaths occurring in 69 patients from two cohorts. Pulmonology 26(4):233–240

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  90. Yu C, Yaguo W, Joy F, Yanhong Y, Ye G, Chang L et al (2020) Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. Medrxiv. https://doi.org/10.1101/2020.03.10.20033795

  91. Walaza S, Tempia S, Dawood H, Variava E, Wolter N, Dreyer A et al (2019) The impact of influenza and tuberculosis interaction on mortality among individuals aged ≥15 years hospitalized with severe respiratory illness in South Africa, 2010–2016. Open Forum Infect Dis 6(3):ofz020. https://doi.org/10.1093/ofid/ofz020

    CrossRef  PubMed  PubMed Central  Google Scholar 

  92. Africa UNECf (2016) The demographic profile of African countries. https://www.uneca.org. Accessed 25 July 2020

  93. Amimo F, Lambert B, Magit A (2020) What does the COVID-19 pandemic mean for HIV, tuberculosis, and malaria control? Trop Med Health 48:32. https://doi.org/10.1186/s41182-020-00219-6

    CrossRef  PubMed  PubMed Central  Google Scholar 

  94. Togun T, Kampmann B, Stoker NG, Lipman M (2020) Anticipating the impact of the COVID-19 pandemic on TB patients and TB control programmes. Ann Clin Microbiol Antimicrob 19:21. https://doi.org/10.1186/s12941-020-00363-1

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  95. Boffa J, Mhlaba T, Sulis G, Moyo S, Sifumba Z, Pai M et al (2020) COVID-19 and tuberculosis in South Africa: a dangerous combination. S Afr Med J 110(5):341–342

    CAS  PubMed  CrossRef  Google Scholar 

  96. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z et al (2020) Epidemiology of COVID-19 among children in China. Pediatrics 145(6):e20200702. https://doi.org/10.1542/peds.2020-0702

    CrossRef  PubMed  Google Scholar 

  97. Götzinger F, Santiago-García B, Noguera-Julián A, Lanaspa M, Lancella L, Calò Carducci FI et al (2020) COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health 4:653. https://doi.org/10.1016/S2352-4642(20)30177-2. Online ahead of print

    CrossRef  PubMed  PubMed Central  Google Scholar 

  98. WHO Weekly bulletin on outbreak and other emergencies: week 30 World Health Organisation. Regional Office for Africa https://apps.who.in/iris/handle/10665/333517. Accessed 26 July 2020

  99. Fakiri KE, Nassih HN, Sab IA, Draiss G, Bouskraoul M (2020) Epidemiology and clinical features of coronavirus disease 2019 in Moroccan children. Indian J Pediatr 57:808. S097475591600207. Online ahead of print

    CrossRef  Google Scholar 

  100. Dufort EM, Koumans EH, Chow EJ, Rosenthal EM, Muse A, Rowlands J et al (2020) Multisystem inflammatory syndrome in children in New York State. N Engl J Med 383(4):347–358

    CAS  PubMed  CrossRef  Google Scholar 

  101. Latimer G, Corriveau C, DeBiasi RL, Jantausch B, Delaney M, Jacquot C et al (2020) Cardiac dysfunction and thrombocytopenia-associated multiple organ failure inflammation phenotype in a severe paediatric case of COVID-19. Lancet Child Adolesc Health 4(7):552–554

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  102. Whittaker E, Bamford A, Kenny J, Kaforou M, Jones CE, Shah P et al (2020) Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA 324:e2010369. https://doi.org/10.1001/jama.2020.10369. Online ahead of print

    CAS  CrossRef  Google Scholar 

  103. Pouletty M, Borocco C, Ouldali N, Caseris M, Basmaci R, Lachaume N et al (2020) Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis 79(8):999–1006

    CAS  PubMed  CrossRef  Google Scholar 

  104. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271-280.e8

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  105. Bunyavanich S (2020) Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA 323(23):2427–2429

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  106. Yang LM, Li-Meng Y, Lagen W, Tian-Xin X, Aiping L, Jia-Ming L et al (2020) Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis 20(6):656–657

    CrossRef  Google Scholar 

  107. John K, van de Sandt C, Lemke M, Lee C, Shoffner S, Chua B et al (2020) Distinct systems serology features in children, elderly and COVID patients. medRxiv. https://doi.org/10.1101/2020.05.11.20098459

  108. UNICEF/WHO/WB Joint child malnutrition estimates: levels and trends in child malnutrition. Key findings of the 2020 edition. https://apps.who.int/iris/bitstream/handle/10665/331621/9789240003576-eng.pdf. Accessed 26 July 2020

  109. Prendergast AJ, Rukobo S, Chasekwa B, Mutasa K, Ntozini R, Mbuya MNN et al (2014) Stunting is characterized by chronic inflammation in Zimbabwean infants. PLoS One 9:e86928. https://doi.org/10.1371/journal.pone.0086928

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  110. Rytter MJH, Kolte L, Briend A, Friis H, Christensen VB (2014) The immune system in children with malnutrition—a systematic review. PLoS One 9:e105017. https://doi.org/10.1371/journal.pone.0105017

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  111. Haque R, Snider C, Liu Y, Ma JZ, Liu L, Nayak U et al (2014) Oral polio vaccine response in breast fed infants with malnutrition and diarrhea. Vaccine 32(4):478–482

    PubMed  CrossRef  Google Scholar 

  112. Sinha DP, Bang FB (1976) Protein and calorie malnutrition, cell mediated immunity, and B.C.G vacination in children from rural West Bengal. Lancet 2(7985):531–534

    CAS  PubMed  CrossRef  Google Scholar 

  113. Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, Vargas-Vázquez A, González-Díaz A, Márquez-Salinas A et al (2020) Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico. J Clin Endocrinol Metab 105(8):dgaa346. https://doi.org/10.1210/clinem/dgaa346

    CrossRef  PubMed  Google Scholar 

  114. Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R et al (2020) Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020. MMWR Morb Mortal Wkly Rep 69:458. https://doi.org/10.15585/mmwr.mm6915e3

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  115. Williams TN (2016) Sickle cell disease in Sub-Saharan Africa. Hematol Oncol Clin North Am 30(2):343–358

    PubMed  PubMed Central  CrossRef  Google Scholar 

  116. Arlet JB, de Luna G, Khimoud D, Odièvre MH, de Montalembert M, Joseph L et al (2020) Prognosis of patients with sickle cell disease and COVID-19: a French experience. Lancet Haematol 7:e632. https://doi.org/10.1016/S2352-3026(20)30204-0. Online ahead of print

    CrossRef  PubMed  PubMed Central  Google Scholar 

  117. McCloskey KA, Meenan J, Hall R, Tsitsikas DA (2020) COVID-19 infection and sickle cell disease: a UK centre experience. Br J Haematol 190(2):e57–e58

    CAS  PubMed  CrossRef  Google Scholar 

  118. Chakravorty S, Padmore-Payne G, Ike F, Tshibangu V, Graham C, Rees D et al (2020) COVID-19 in patients with sickle cell disease – a case series from a UK Tertiary Hospital. Haematologica:haematol.2020.254250. https://doi.org/10.3324/haematol.2020.254250. Online ahead of print

  119. Panepinto JA, Brandow A, Mucalo L, Yusuf F, Singh A, Taylor B et al (2020) Coronavirus disease among persons with sickle cell disease, United States, March 20-May 21, 2020. Emerg Infect Dis 26(10):2473. https://doi.org/10.3201/eid2610.202792. Online ahead of print

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  120. Folsom AR, Tang W, Roetker NS, Kshirsagar AV, Derebail VK, Lutsey PL et al (2015) Prospective study of sickle cell trait and venous thromboembolism incidence. J Thromb Haemost 13(1):2–9

    CAS  PubMed  CrossRef  Google Scholar 

  121. Cameron PU, Jones P, Gorniak M, Dunster K, Paul E, Lewin S et al (2011) Splenectomy associated changes in IgM memory B cells in an adult spleen registry cohort. PLoS One 6(8):e23164. https://doi.org/10.1371/journal.pone.0023164

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  122. Koffi KG, Sawadogo D, Meite M, Nanho DC, Tanoh ES, Attia AK et al (2003) Reduced levels of T-cell subsets CD4+ and CD8+ in homozygous sickle cell anaemia patients with splenic defects. Hematol J 4(5):363–365

    PubMed  CrossRef  Google Scholar 

  123. Brousse V, Buffet P, Rees D (2014) The spleen and sickle cell disease: the sick(led) spleen. Br J Haematol 166(2):165–176

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

George, J.A., Maphayi, M.R., Pillay, T. (2021). COVID-19 and Vulnerable Populations in Sub-Saharan Africa. In: Guest, P.C. (eds) Clinical, Biological and Molecular Aspects of COVID-19. Advances in Experimental Medicine and Biology(), vol 1321. Springer, Cham. https://doi.org/10.1007/978-3-030-59261-5_13

Download citation