Skip to main content

Control of Flow Rate in Heavy-Oil Pipelines Using PD and PID Controller

  • Chapter
  • First Online:
Flow Modelling and Control in Pipeline Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 321))

  • 752 Accesses

Abstract

In this chapter a PD controller is utilized in order to control the flow rate of the heavy-oil in pipelines by controlling the vibration in motor-pump. A torsional actuator is placed on the motor-pump in order to control the vibration on motor and consequently controlling the flow rates in pipelines. The necessary conditions for asymptotic stability of the proposed controller is validated by implementing the Lyapunov stability theorem. The theoretical concepts are validated utilizing numerical simulations and analysis, which proves the effectiveness of the PD controller in the control of flow rates in pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Åström, K.J., Wittenmark, B.: Computer-Controlled Systems: Theory and Design. Courier Corporation (2013)

    Google Scholar 

  2. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control 115(2B), 220–222 (1993). https://doi.org/10.1115/1.2899060

    Article  Google Scholar 

  3. Basilio, J.C., Matos, S.: Design of PI and PID controllers with transient performance specification. IEEE Trans. Educ. 45(4), 364–370 (2002)

    Article  Google Scholar 

  4. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control: PID controller design. Ind. Eng. Chem. Process Des. Dev. 25(1), 252–265 (1986)

    Article  Google Scholar 

  5. Basilio, J., Silva, J., Rolim, L., Moreira, M.: H∞ design of rotor flux-oriented current-controlled induction motor drives: speed control, noise attenuation and stability robustness. IET Control Theory Appl. 4(11), 2491–2505 (2010)

    Article  Google Scholar 

  6. Suh, I., Bien, Z.: Proportional minus delay controller. IEEE Trans. Autom. Control. 24(2), 370–372 (1979)

    Google Scholar 

  7. Berger, E.: Suppression of vortex shedding and turbulence behind oscillating cylinders. Phys. Fluids 10(9), S191–S193 (1967)

    Article  Google Scholar 

  8. Baz, A., Ro, J.: Active control of flow-induced vibrations of a flexible cylinder using direct velocity feedback. J. Sound Vib. 146(1), 33–45 (1991)

    Article  Google Scholar 

  9. Williams, J.F., Zhao, B.: The active control of vortex shedding. J. Fluids Struct. 3(2), 115–122 (1989)

    Article  Google Scholar 

  10. Roussopoulos, K.: Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267–296 (1993)

    Article  Google Scholar 

  11. Hiejima, S., Kumao, T., Taniguchi, T.: Feedback control of vortex shedding around a bluff body by velocity excitation. Int. J. Comput. Fluid Dyn. 19(1), 87–92 (2005)

    Article  MATH  Google Scholar 

  12. Sung, S.W., Lee, J., Lee, I.-B.: Process Identification and PID Control. Wiley (2009)

    Google Scholar 

  13. Kusters, A., Van Ditzhuijzen, G.: MIMO system identification of a slab reheating furnace. In: Proceedings of the Third IEEE Conference on Control Applications, pp. 1557–1563 (1994)

    Google Scholar 

  14. O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules. Imperial College Press (2009)

    Google Scholar 

  15. Choi, H., Jeon, W.P., Kim, J.: Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Collis, S.S., Joslin, R.D., Seifert, A., Theofilis, V.: Issues in active flow control: theory, control, simulation, and experiment. Prog. Aerosp. Sci. 40(4–5), 237–289 (2004)

    Article  Google Scholar 

  17. Gad-El-Hak, M., Pollard, A., Bonnet, J.-P.: Flow Control: Fundamentals and Practices, vol. 53. Springer Science & Business Media (2003)

    Google Scholar 

  18. Fadlun, E., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mohd-Yusof, J.: Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. Cent. Turb. Res. Annu. Res. Briefs 161(1), 317–327 (1997)

    MathSciNet  Google Scholar 

  20. Nandy, A., Mondal, S., Chakraborty, P., Nandi, G.C.: Development of a robust microcontroller based intelligent prosthetic limb. In: International Conference on Contemporary Computing, pp. 452–462. Springer (2012)

    Google Scholar 

  21. Yu, W., Jafari, R.: Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number. Wiley (2019)

    Google Scholar 

  22. Razvarz, S., Jafari, R.: ICA and ANN modeling for photocatalytic removal of pollution in wastewater. Math. Comput. Appl. 22(3), 38 (2017)

    Google Scholar 

  23. Jafari, R., Razvarz, S., Gegov, A.: Neural network approach to solving fuzzy nonlinear equations using Z-numbers. IEEE Trans. Fuzzy Syst. (2019)

    Google Scholar 

  24. Razvarz, S., Jafari, R.: Intelligent techniques for photocatalytic removal of pollution in wastewater. J. Electr. Eng. 5(1), 321–328 (2017)

    Google Scholar 

  25. Jafari, R., Razvarz, S., Gegov, A., Paul, S., Keshtkar, S.: Fuzzy Sumudu transform approach to solving fuzzy differential equations with Z-numbers. In: Advanced Fuzzy Logic Approaches in Engineering Science, pp. 18–48. IGI Global (2019)

    Google Scholar 

  26. Jafari, R., Razvarz, S., Gegov, A.: A novel technique to solve fully fuzzy nonlinear matrix equations. In: International Conference on Theory and Applications of Fuzzy Systems and Soft Computing, pp. 886–892. Springer (2018)

    Google Scholar 

  27. Jafari, R., Razvarz, S., Gegov, A.: Fuzzy differential equations for modeling and control of fuzzy systems. In: International Conference on Theory and Applications of Fuzzy Systems and Soft Computing, pp. 732–740. Springer (2018)

    Google Scholar 

  28. Jafari, R., Yu, W., Razvarz, S., Gegov, A.: Numerical methods for solving fuzzy equations: a survey. Fuzzy Sets Syst. (2019)

    Google Scholar 

  29. Jafari, R., Razvarz, S., Gegov, A.: A new computational method for solving fully fuzzy nonlinear systems. In: International Conference on Computational Collective Intelligence, pp. 503–512. Springer (2018)

    Google Scholar 

  30. Jafari, R., Razvarz, S., Gegov, A., Paul, S.: Modeling and control of uncertain nonlinear systems. In: 2018 International Conference on Intelligent Systems (IS), pp. 168–173. IEEE (2018)

    Google Scholar 

  31. Jafari, R., Razvarz, S., Gegov, A.: A novel technique for solving fully fuzzy nonlinear systems based on neural networks. Vietnam J. Comput. Sci. 7(1), 93–107 (2020)

    Article  Google Scholar 

  32. Razvarz, S., Hernández-Rodríguez, F., Jafari, R., Gegov, A.: Foundation of Z-numbers and engineering applications. In: Latin American Symposium on Industrial and Robotic Systems, pp. 15–24. Springer (2019)

    Google Scholar 

  33. Jafari, R., Contreras, M.A., Yu, W., Gegov, A.: Applications of fuzzy logic, artificial neural network and neuro-fuzzy in industrial engineering. In: Latin American Symposium on Industrial and Robotic Systems, pp. 9–14. Springer (2019)

    Google Scholar 

  34. Jafari, R., Razvarz, S., Gegov, A., Yu, W.: Fuzzy control of uncertain nonlinear systems with numerical techniques: a survey. In: UK Workshop on Computational Intelligence, pp. 3–14. Springer (2019)

    Google Scholar 

  35. Jafari, R., Razvarz, S., Yu, W., Gegov, A., Goodwin, M., Adda, M.: Genetic algorithm modeling for photocatalytic elimination of impurity in wastewater. In: Proceedings of SAI Intelligent Systems Conference, pp. 228–236. Springer (2019)

    Google Scholar 

  36. Tatchum, M., Gegov, A., Jafari, R., Razvarz, S.: Parallel distributed compensation for voltage controlled active magnetic bearing system using integral fuzzy model. In: 2018 International Conference on Intelligent Systems (IS), pp. 190–198. IEEE (2018)

    Google Scholar 

  37. Razvarz, S., Jafari, R., Gegov, A.: Solving partial differential equations with Bernstein neural networks. In: UK Workshop on Computational Intelligence, pp. 57–70. Springer (2018)

    Google Scholar 

  38. Jafarian, A., Jafari, R.: New iterative approach for solving fully fuzzy polynomials. Int. J. Fuzzy Math. Syst. 3(2), 75–83

    Google Scholar 

  39. Jafarian, A., Jafari, R.: New method for solving fuzzy polynomials. Adv. Fuzzy Math. 8(1), 25–33 (2013)

    Google Scholar 

  40. Jafarian, A., Jafari, R.: An iterative method for solving fuzzy polynomials by fuzzy neural networks (2012)

    Google Scholar 

  41. Jafarian, A., Jafari, R.: Simulation and evaluation of fuzzy polynomials by feed-back neural networks (2012)

    Google Scholar 

  42. Jafari, R., Yu, W.: Fuzzy control for uncertainty nonlinear systems with dual fuzzy equations. J. Intell. Fuzzy Syst. 29(3), 1229–1240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jafari, R., Yu, W.: Fuzzy modeling for uncertainty nonlinear systems with fuzzy equations. Math. Probl. Eng. (2017)

    Google Scholar 

  44. Müller, S., Milano, M., Koumoutsakos, P.: Application of machine learning algorithms to flow modeling and optimization. Annu. Res. Briefs 169–178 (1999)

    Google Scholar 

  45. Aly, A.A.: An artificial neural network flow control of variable displacement piston pump with pressure compensation. Int. J. Control Autom. Syst. 4(1), 1–7 (2015)

    MathSciNet  Google Scholar 

  46. Razvarz, S., Vargas-Jarillo, C., Jafari, R.: Pipeline monitoring architecture based on observability and controllability analysis. In: 2019 IEEE International Conference on Mechatronics (ICM), 18–20 Mar 2019, pp. 420–423 (2019)

    Google Scholar 

  47. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Yu, W.: Control of flow rate in pipeline using PID controller. In: 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), 9–11 May 2019, pp. 293–298 (2019)

    Google Scholar 

  48. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Gegov, A.: Blockage detection in pipeline based on the extended Kalman filter observer. Electronics 9(1), 91–107 (2020)

    Article  Google Scholar 

  49. Razvarz, S., Jafari, R., Vargas-Jarillo, C.: Modelling and analysis of flow rate and pressure head in pipelines. In: 2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6. IEEE (2019)

    Google Scholar 

  50. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Gegov, A.E.: The effect of baffles on heat transfer. In: ICINCO (2), pp. 607–612 (2019)

    Google Scholar 

  51. Razvarz, S., Jafari, R., Vargas-Jarillo, C., Gegov, A., Forooshani, M.: Leakage detection in pipeline based on second order extended Kalman filter observer. IFAC-PapersOnLine 52(29), 116–121 (2019)

    Article  Google Scholar 

  52. Razvarz, S., Vargas-Jarillo, C., Jafari, R., Gegov, A.: Flow control of fluid in pipelines using PID controller. IEEE Access 7, 25673–25680 (2019)

    Article  Google Scholar 

  53. Razvarz, S., Chavez, L.F.G., Vargas-Jarillo, C.: Nanotechnology applications in industry and heat transfer. In: Latin American Symposium on Industrial and Robotic Systems, pp. 1–8. Springer (2019)

    Google Scholar 

  54. Park, D., Ladd, D., Hendricks, E.: Feedback control of von Kármán vortex shedding behind a circular cylinder at low Reynolds numbers. Phys. Fluids 6(7), 2390–2405 (1994)

    Article  MATH  Google Scholar 

  55. Herrán-González, A., De La Cruz, J., De Andrés-Toro, B., Risco-Martín, J.L.: Modeling and simulation of a gas distribution pipeline network. Appl. Math. Model. 33(3), 1584–1600 (2009)

    Article  MATH  Google Scholar 

  56. Whitaker, R.D.: An historical note on the conservation of mass. J. Chem. Educ. 52(10), 658 (1975)

    Article  Google Scholar 

  57. Kamand, F.Z.: Hydraulic friction factors for pipe flow. J. Irrig. Drain. Eng. 114(2), 311–323 (1988)

    Article  Google Scholar 

  58. Loudon, C., McCulloh, K.: Application of the Hagen—Poiseuille equation to fluid feeding through short tubes. Ann. Entomol. Soc. Am. 92(1), 153–158 (1999)

    Article  Google Scholar 

  59. Roldán, C., Campa, F., Altuzarra, O., Amezua, E.: Automatic identification of the inertia and friction of an electromechanical actuator. In: New Advances in Mechanisms, Transmissions and Applications, pp. 409–416. Springer (2014)

    Google Scholar 

  60. Tomei, P.: Adaptive PD controller for robot manipulators. IEEE Trans. Robot. Autom. 7(4), 565–570 (1991)

    Article  Google Scholar 

  61. Sun, J., Chen, G., Ko, K.-T., Chan, S., Zukerman, M.: PD-controller: a new active queue management scheme. In: GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat. No. 03CH37489), pp. 3103–3107. IEEE (2003)

    Google Scholar 

  62. Wang, J.S., Zhang, Y., Wang, W.: Optimal design of PI/PD controller for non-minimum phase system. Trans. Inst. Meas. Control 28(1), 27–35 (2006)

    Article  MathSciNet  Google Scholar 

  63. Kuo, Y.P., Li, T.S.: GA-based fuzzy PI/PD controller for automotive active suspension system. IEEE Trans. Ind. Electron. 46(6), 1051–1056 (1999)

    Article  Google Scholar 

  64. Hoang, N.Q., Kreuzer, E.: Adaptive PD-controller for positioning of a remotely operated vehicle close to an underwater structure: theory and experiments. Control Eng. Pract. 15(4), 411–419 (2007)

    Article  Google Scholar 

  65. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practice. CRC Press (2003)

    Google Scholar 

  66. Van den Bos, A.: Parameter Estimation for Scientists and Engineers. Wiley (2007)

    Google Scholar 

  67. Sontag, E.D., Wang, Y.: On characterizations of the input-to-state stability property. Syst. Control Lett. 24(5), 351–360 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Jafari .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razvarz, S., Jafari, R., Gegov, A. (2021). Control of Flow Rate in Heavy-Oil Pipelines Using PD and PID Controller. In: Flow Modelling and Control in Pipeline Systems. Studies in Systems, Decision and Control, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-030-59246-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59246-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59245-5

  • Online ISBN: 978-3-030-59246-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics