Skip to main content

Leakage Modelling for Pipeline

  • Chapter
  • First Online:
Flow Modelling and Control in Pipeline Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 321))

Abstract

Pipeline networks have been the preferred mode of transportation for natural gas, oil, condensate, and water as they are the most economical, efficient, and safest mean to transport. Nevertheless, different types of damage such as abrasion, dent, and corrosion may develop over time, threatening the safety of the pipelines and result in significant costs. Pipeline leak detection systems can help detect and determine the location of the damage when there is a leak. Normally, small leaks are difficult to detect, therefore in this chapter a leak detection system based on nonlinear adaptive state observer is used to detect small changes of pressure and flow at both the inlet and outlet of the pipeline for the early identification of small leaks regardless of their location on the pipeline. The suggested model-based technique easily identifies the position of leakages in the pipe by assuming only flow and pressure measurements at the ends of each duct. In this approach, the fluid model can be represented as a set of coupled nonlinear dynamic equations in a leaking pipe. Our findings suggest that the proposed technique is a powerful and realistic tool to detect and determine the location of leaks in pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spenser, B., Benichou, N., Bash, A.: Paravalvular leak detection, sealing, and prevention. Google Patents (2007)

    Google Scholar 

  2. Billmann, L., Isermann, R.: Leak detection methods for pipelines. Automatica 23(3), 381–385 (1987)

    Article  MATH  Google Scholar 

  3. Vítkovský, J.P., Simpson, A.R., Lambert, M.F.: Leak detection and calibration using transients and genetic algorithms. J. Water Resour. Plan. Manag. 126(4), 262–265 (2000)

    Article  Google Scholar 

  4. Murvay, P.S., Silea, I.: A survey on gas leak detection and localization techniques. J. Loss Prev. Process Ind. 25(6), 966–973 (2012)

    Article  Google Scholar 

  5. Fukushima, K., Maeshima, R., Kinoshita, A., Shiraishi, H., Koshijima, I.: Gas pipeline leak detection system using the online simulation method. Comput. Chem. Eng. 24(2–7), 453–456 (2000)

    Article  Google Scholar 

  6. Zhang, J.: Designing a cost-effective and reliable pipeline leak-detection system. Pipes Pipelines Int. 42(1), 20–26 (1997)

    Google Scholar 

  7. Mears, M.N.: Real world applications of pipeline leak detection. In: Pipeline Infrastructure II, pp. 189–209. ASCE (1993)

    Google Scholar 

  8. Liou, C.P.: Pipeline leak detection by impulse response extraction (1998)

    Google Scholar 

  9. Boaz, L., Kaijage, S., Sinde, R.: An overview of pipeline leak detection and location systems. In: Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications (PACT 2014), pp. 133–137. IEEE (2014)

    Google Scholar 

  10. McAtamney, D.E.: Pipeline leak detection system. Google Patents (1994)

    Google Scholar 

  11. Covington, M.T.: Liquid pipeline leak detection. Google Patents (1982)

    Google Scholar 

  12. Kruka, V.R., Patterson, R.W., Haws, J.H.: Subsea pipeline leak detection. Google Patents (1991)

    Google Scholar 

  13. Butts, E.O.: Pipeline leak detection device. Google Patents (1971)

    Google Scholar 

  14. Yu, W., Jafari, R.: Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number. Wiley (2019)

    Google Scholar 

  15. Razvarz, S., Jafari, R.: ICA and ANN modeling for photocatalytic removal of pollution in wastewater. Math. Comput. Appl. 22(3), 38 (2017)

    Google Scholar 

  16. Jafari, R., Razvarz, S., Gegov, A.: Neural network approach to solving fuzzy nonlinear equations using Z-numbers. IEEE Trans. Fuzzy Syst. (2019)

    Google Scholar 

  17. Razvarz, S., Jafari, R.: Intelligent techniques for photocatalytic removal of pollution in wastewater. J. Electr. Eng. 5(1), 321–328 (2017)

    Google Scholar 

  18. Jafari, R., Razvarz, S., Gegov, A., Paul, S., Keshtkar, S.: Fuzzy Sumudu transform approach to solving fuzzy differential equations with Z-numbers. In: Advanced Fuzzy Logic Approaches in Engineering Science, pp. 18–48. IGI Global (2019)

    Google Scholar 

  19. Jafari, R., Razvarz, S., Gegov, A.: A novel technique to solve fully fuzzy nonlinear matrix equations. In: International Conference on Theory and Applications of Fuzzy Systems and Soft Computing, pp. 886–892. Springer (2018)

    Google Scholar 

  20. Jafari, R., Razvarz, S., Gegov, A.: Fuzzy differential equations for modeling and control of fuzzy systems. In: International Conference on Theory and Applications of Fuzzy Systems and Soft Computing, pp. 732–740. Springer (2018)

    Google Scholar 

  21. Jafari, R., Yu, W., Razvarz, S., Gegov, A.: Numerical methods for solving fuzzy equations: a survey. Fuzzy Sets Syst. (2019)

    Google Scholar 

  22. Jafari, R., Razvarz, S., Gegov, A.: A new computational method for solving fully fuzzy nonlinear systems. In: International Conference on Computational Collective Intelligence, pp. 503–512. Springer (2018)

    Google Scholar 

  23. Jafari, R., Razvarz, S., Gegov, A., Paul, S.: Modeling and control of uncertain nonlinear systems. In: 2018 International Conference on Intelligent Systems (IS), pp. 168–173. IEEE (2018)

    Google Scholar 

  24. Jafari, R., Razvarz, S., Gegov, A.: A novel technique for solving fully fuzzy nonlinear systems based on neural networks. Vietnam J. Comput. Sci. 7(1), 93–107 (2020)

    Article  Google Scholar 

  25. Razvarz, S., Hernández-Rodríguez, F., Jafari, R., Gegov, A.: Foundation of Z-numbers and engineering applications. In: Latin American Symposium on Industrial and Robotic Systems, pp. 15–24. Springer (2019)

    Google Scholar 

  26. Jafari, R., Contreras, M.A., Yu, W., Gegov, A.: Applications of fuzzy logic, artificial neural network and neuro-fuzzy in industrial engineering. In: Latin American Symposium on Industrial and Robotic Systems, pp. 9–14. Springer (2019)

    Google Scholar 

  27. Jafari, R., Razvarz, S., Gegov, A., Yu, W.: Fuzzy control of uncertain nonlinear systems with numerical techniques: a survey. In: UK Workshop on Computational Intelligence, pp. 3–14. Springer (2019)

    Google Scholar 

  28. Jafari, R., Razvarz, S., Yu, W., Gegov, A., Goodwin, M., Adda, M.: Genetic algorithm modeling for photocatalytic elimination of impurity in wastewater. In: Proceedings of SAI Intelligent Systems Conference, pp. 228–236. Springer (2019)

    Google Scholar 

  29. Tatchum, M., Gegov, A., Jafari, R., Razvarz, S.: Parallel distributed compensation for voltage controlled active magnetic bearing system using integral fuzzy model. In: 2018 International Conference on Intelligent Systems (IS), pp. 190–198. IEEE (2018)

    Google Scholar 

  30. Razvarz, S., Jafari, R., Gegov, A.: Solving partial differential equations with Bernstein neural networks. In: UK Workshop on Computational Intelligence, pp. 57–70. Springer (2018)

    Google Scholar 

  31. Jafarian, A., Jafari, R.: New iterative approach for solving fully fuzzy polynomials. Int. J. Fuzzy Math. Syst. 3(2), 75–83

    Google Scholar 

  32. Jafarian, A., Jafari, R.: New method for solving fuzzy polynomials. Adv. Fuzzy Math. 8(1), 25–33 (2013)

    Google Scholar 

  33. Jafarian, A., Jafari, R.: An iterative method for solving fuzzy polynomials by fuzzy neural networks (2012)

    Google Scholar 

  34. Jafarian, A., Jafari, R.: (2012) Simulation and evaluation of fuzzy polynomials by feed-back neural networks

    Google Scholar 

  35. Jafari, R., Yu, W.: Fuzzy control for uncertainty nonlinear systems with dual fuzzy equations. J. Intell. Fuzzy Syst. 29(3), 1229–1240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jafari, R., Yu, W.: Fuzzy modeling for uncertainty nonlinear systems with fuzzy equations. Math. Probl. Eng. (2017)

    Google Scholar 

  37. Verde, C., Visairo, N., Gentil, S.: Two leaks isolation in a pipeline by transient response. Adv. Water Resour. 30(8), 1711–1721 (2007)

    Article  Google Scholar 

  38. Verde, C., Visairo, N.: Identificability of multi-leaks in a pipeline. In: Proceedings of the 2004 American Control Conference, pp. 4378–4383. IEEE (2004)

    Google Scholar 

  39. Verde, C., Visairo, N.: Multi-leak isolation in a pipeline by unsteady state test. In: 44th IEEE Conference on Decision and Control and European Control Conference ECC, pp. 1711–1721 (2005)

    Google Scholar 

  40. Verde, C.: Accommodation of multi-leak location in a pipeline. Control Eng. Pract. 13(8), 1071–1078 (2005)

    Article  Google Scholar 

  41. Carrera, R., Verde, C., Cayetano, R.: A SCADA expansion for leak detection in a pipeline. Sensors 2300(2320), 2340 (2015)

    Google Scholar 

  42. Verde, C.: Leakage location in pipelines by minimal order nonlinear observer. In: Proceedings of the 2001 American Control Conference (Cat. No. 01CH37148), pp. 1733–1738. IEEE (2001)

    Google Scholar 

  43. Kowalczuk, Z., Gunawickrama, K.: Leak detection and isolation for transmission pipelines via nonlinear state estimation. IFAC Proc. Vol. 33(11), 921–926 (2000)

    Article  Google Scholar 

  44. Verde, C., Torres, L.: Modeling and Monitoring of Pipelines and Networks. Springer (2017)

    Google Scholar 

  45. Antory, D.: Application of a data-driven monitoring technique to diagnose air leaks in an automotive diesel engine: a case study. Mech. Syst. Signal Process. 21(2), 795–808 (2007)

    Article  Google Scholar 

  46. Ballesta, C., Berindoague, R., Cabrera, M., Palau, M., Gonzales, M.: Management of anastomotic leaks after laparoscopic Roux-en-Y gastric bypass. Obes. Surg. 18(6), 623–630 (2008)

    Article  Google Scholar 

  47. Vickers, A.L.: The future of water conservation: challenges ahead. J. Contemp. Water Res. Educ. 114(1), 8 (1999)

    Google Scholar 

  48. Environment Canada: Threats to Water Availability in Canada. National Water Research Institute, Burlington (2004)

    Google Scholar 

  49. Al-Dhowalia, K., Shammas, N.K., Quraishi, A., Al-Muttair, F.: Assessment of Leakage in the Riyadh Water Distribution Network. First Progress Report. King Abdulaziz City for Science and Technology (1989)

    Google Scholar 

  50. Billmann, L., Isermann, R.: Leak detection methods for pipelines. IFAC Proc. Vol. 17(2), 1813–1818 (1984)

    Article  MATH  Google Scholar 

  51. Benkherouf, A., Allidina, A.: Leak detection and location in gas pipelines. IEE Proc. D Control Theory Appl. 2, 142–148 (1988)

    Google Scholar 

  52. Verde, C.: Minimal order nonlinear observer for leak detection. J. Dyn. Syst. Meas. Control 126(3), 467–472 (2004)

    Article  Google Scholar 

  53. Angulo, M.T., Verde, C.: Second-order sliding mode algorithms for the reconstruction of leaks. In: 2013 Conference on Control and Fault-Tolerant Systems (SysTol), pp. 566–571. IEEE (2013)

    Google Scholar 

  54. Besançon, G., Georges, D., Begovich, O., Verde, C., Aldana, C.: Direct observer design for leak detection and estimation in pipelines. In: 2007 European Control Conference (ECC), pp. 5666–5670. IEEE (2007)

    Google Scholar 

  55. Krass, W., Kittel, A., Uhde, A.: Pipeline technology. Petroleum oil-long-distance pipelines. Pipelinetechnik. Mineralolfernleitungen. (1979)

    Google Scholar 

  56. Razvarz, S., Vargas-Jarillo, C., Jafari, R., Gegov, A.: Flow control of fluid in pipelines using PID controller. IEEE Access 7, 25673–25680 (2019)

    Article  Google Scholar 

  57. Razvarz, S., Vargas-Jarillo, C., Jafari, R.: Pipeline monitoring architecture based on observability and controllability analysis. In: 2019 IEEE International Conference on Mechatronics (ICM), 18–20 Mar 2019, pp. 420–423 (2019)

    Google Scholar 

  58. Razvarz, S., Jafari, R., Vargas-Jarillo, C., Gegov, A., Forooshani, M.: Leakage detection in pipeline based on second order extended Kalman filter observer. IFAC-PapersOnLine 52(29), 116–121 (2019). https://doi.org/10.1016/j.ifacol.2019.12.631

    Article  Google Scholar 

  59. Razvarz, S., Jafari, R., Vargas-Jarillo, C.: Modelling and analysis of flow rate and pressure head in pipelines. In: 2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6. IEEE (2019)

    Google Scholar 

  60. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Yu, W.: Control of flow rate in pipeline using PID controller. In: 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), 9–11 May 2019, pp. 293–298 (2019)

    Google Scholar 

  61. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Gegov, A.: Blockage detection in pipeline based on the extended Kalman filter observer. Electronics 9(1), 91–107 (2020)

    Article  Google Scholar 

  62. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Gegov, A.E.: The effect of baffles on heat transfer. In: ICINCO (2). pp. 607–612 (2019)

    Google Scholar 

  63. Çengel, Y.A., Turner, R.H., Cimbala, J.M., Kanoglu, M.: Fundamentals of Thermal-Fluid Sciences, vol. 703. McGraw-Hill, New York (2001)

    Google Scholar 

  64. Saleta, M.E., Tobia, D., Gil, S.: Experimental study of Bernoulli’s equation with losses. Am. J. Phys. 73(7), 598–602 (2005)

    Article  Google Scholar 

  65. Houghtalen, R.J., Osman, A., Hwang, N.H.: Fundamentals of Hydraulic Engineering Systems. Prentice Hall, New York (2016)

    Google Scholar 

  66. Besançon, G.: Nonlinear Observers and Applications, vol. 363. Springer (2007)

    Google Scholar 

  67. Zeitz, M.: The extended Luenberger observer for nonlinear systems. Syst. Control Lett. 9(2), 149–156 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  68. Ciccarella, G., Dalla Mora, M., Germani, A.: A Luenberger-like observer for nonlinear systems. Int. J. Control 57(3), 537–556 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  69. Birk, J., Zeitz, M.: Extended Luenberger observer for non-linear multivariable systems. Int. J. Control 47(6), 1823–1836 (1988)

    Article  MATH  Google Scholar 

  70. Guillén, M., Dulhoste, J.F., Besancon, G., Rubio, I., Santos, R., Georges, D.: Leak detection and location based on improved pipe model and nonlinear observer. In: 2014 European Control Conference (ECC), pp. 958–963. IEEE (2014)

    Google Scholar 

  71. Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Autom. Control 37(6), 875–880 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  72. Gauthier, J., Bornard, G.: Observability for any u(t) of a class of nonlinear systems. IEEE Trans. Autom. Control 26(4), 922–926 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  73. Yano, K.: The Theory of Lie Derivatives and Its Applications. Courier Dover Publications (2020)

    Google Scholar 

  74. Kocarev, L., Parlitz, U., Hu, B.: Lie derivatives and dynamical systems. Chaos Solitons Fract. 9(8), 1359–1366 (1998)

    Article  MATH  Google Scholar 

  75. Nijmeijer, H., Van der Schaft, A.: Nonlinear Dynamical Control Systems, vol. 175. Springer (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Jafari .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razvarz, S., Jafari, R., Gegov, A. (2021). Leakage Modelling for Pipeline. In: Flow Modelling and Control in Pipeline Systems. Studies in Systems, Decision and Control, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-030-59246-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59246-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59245-5

  • Online ISBN: 978-3-030-59246-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics