Skip to main content

The Importance of Pipeline Transportation

  • Chapter
  • First Online:
Flow Modelling and Control in Pipeline Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 321))

Abstract

The pipeline performance tracking system (PPTS) is the main element of the pipeline industry's environment. The pipeline industries initiated a voluntary reporting initiative, the PPTS, in 1998. The aim of pipeline industries is to generate a tool to achieve improved safety performance and to reduce the operational errors while transmitting the fluid. This chapter describes the risk associated with pipelines and also the specific characteristics of the pipelines such as materials and physical properties from the decade of construction. This chapter provides the introduction of the research background, with a review of the economy of pipe networks and the significance of pipe networks and fluid transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Needham, J.: Science and Civilization in China, vol. 4, p. 33. Caves Books Ltd., Taipei (1986)

    Google Scholar 

  2. The Forrest family Archived 2016-08-17 at the Wayback Machine Dynasties (2006). ABC

    Google Scholar 

  3. Mannum Adelaide Celebrations SA Water. Archived from the original on 2015-05-03. 2015 IEEE Student Symposium in Biomedical Engineering and Science (ISSBES)

    Google Scholar 

  4. GMR (Great Man-Made River) Water Supply Project, Libya (2012). Water-technologynet Retrieved Apr. 15

    Google Scholar 

  5. Morgan-Whyalla Pipeline Bill.: The Advertiser Adelaide: National Library of Australia ( 23 Aug. 1940), 20 (2014)

    Google Scholar 

  6. Hammerton, M.: Water South Australia: A History of the Engineering and Water Supply Department. Wakefield Press (1986)

    Google Scholar 

  7. The World Factbook—Central Intelligence Agency (2016). Archived from the original on August 21, 2016 Retrieved September 6

    Google Scholar 

  8. Pipeline transport (2015). Retrieved 26 January 2015

    Google Scholar 

  9. The Transportation of Natural Gas (2019). Retrieved 2019-07-18

    Google Scholar 

  10. Waldman, J.: How the Oil Pipeline Began. Nautilus (Science Magazine) (2017)

    Google Scholar 

  11. Conca, J.: Pick Your Poison For Crude -- Pipeline, Rail, Truck Or Boat. Forbes

    Google Scholar 

  12. American Petroleum Institute. Accessed 20 Feb. 2010

    Google Scholar 

  13. Drilling Productivity Report.: US Energy Information Administration (2017)

    Google Scholar 

  14. Line 9: Journey along the pipeline|Toronto Star (2015)

    Google Scholar 

  15. Ulvestad, M., Overland, I.: Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines. Int. J. Environ. Stud. 69(3), 407–426 (2012). https://doi.org/10.1080/00207233.2012.677581

    Article  Google Scholar 

  16. Enbridge Sandpiper Pipeline (2015)

    Google Scholar 

  17. Oil & Gas Pipeline Construction in the U.S.: Market Research Report. IBIS World (2012)

    Google Scholar 

  18. 2012 Worldwide Pipeline Construction Report Archived 2013-03-25 at the Wayback Machine. Pipeline Gas J. 239(1) (2012)

    Google Scholar 

  19. Mohitpour, M.: Pipeline Design and Construction: A Practical Approach. ASME Press (2003)

    Google Scholar 

  20. go-devil—definition of go-devil by the Free Online Dictionary. Thesaurus and Encyclopedia

    Google Scholar 

  21. Kiefner, J.F., Kiefner, B.A., Vieth, P.H.: Analysis of DOT Reportable Incidents for Hazardous Liquid Pipelines, 1986 Through 1996. API Publication 1158 (1999)

    Google Scholar 

  22. Trench, C.J.: The U.S. Oil Pipeline Industry's Safety Performance (2001)

    Google Scholar 

  23. Laird, C.: The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Grosskreutz J (ed) Fatigue Crack Propagation. ASTM International, West Conshohocken, PA, pp. 131–180 (1967). https://doi.org/10.1520/STP47230S

  24. Dreyfuss, G., Smith, A.A.: Automatic welding of pipelines with the ‘saturne’ process on a Laybarge. In: Welding in Energy-Related Projects. Pergamon, pp. 115–122 (1984). https://doi.org/10.1016/B978-0-08-025412-8.50016-4

  25. Huntley, R.M., Dorling, D.V., Rothwell, A.B.: Pipeline girth welding using the flux-cored arc welding process. In: Welding in Energy-Related Projects. Pergamon, pp 85–94 (1984). https://doi.org/10.1016/B978-0-08-025412-8.50013-9

  26. Fink, J.: Chapter 7 - Pipeline Cleaning. In: Fink J (ed) Guide to the Practical Use of Chemicals in Refineries and Pipelines. Gulf Professional Publishing, Boston, pp. 109–129 (2016). https://doi.org/10.1016/B978-0-12-805412-3.00007-6

  27. Sasseen, K.M., Chilingarian, G.V., Robertson, J.O.: Chapter 1 Introduction to Surface Production Equipment. In: Chilingarian, G.V., Robertson, J.O., Kumar, S. (eds) Developments in Petroleum Science, vol. 19. Elsevier, pp. 1–41 (1987). https://doi.org/10.1016/S0376-7361(08)70530-2

  28. Stewart, M.: Design of Gas-Handling Systems and Facilities. Surface Production Operations, vol. 2, 3rd edn. Elsevier, Waltham, Massachusetts (2014)

    Google Scholar 

  29. Caretta, M.A., McHenry, K.A.: Pipelining Appalachia: a perspective on the everyday lived experiences of rural communities at the frontline of energy distribution networks development. Energy Res. Soc. Sci. 63, 101403 (2020). https://doi.org/10.1016/j.erss.2019.101403

    Article  Google Scholar 

  30. Milward, A., Saul, S.B.: The Development of the Economies of Continental Europe 1850–1914., pp. 1–96 (2012)

    Google Scholar 

  31. Scott, R.P., Scott, T.A.: Investing in collaboration for safety: assessing grants to states for oil and gas distribution pipeline safety program enhancement. Energy Policy 124, 332–345 (2019). https://doi.org/10.1016/j.enpol.2018.10.007

    Article  Google Scholar 

  32. Lawal, M.: Historical development of the pipeline as a mode of transportation. Geogr. Bull. 43(2), 91–99 (2001)

    Google Scholar 

  33. Twentyman, M., Rosetti, R., Porta, G.: Microstructural evolution of pipelines for thermal electric power plants after a prolongated operation

    Google Scholar 

  34. Özer, A., Kasirga, E.: Substrate removal in long sewer lines. Water Sci. Technol. 31(7), 213–218 (1995)

    Article  Google Scholar 

  35. Whipple, G.C.: Sewerage and Sewage Disposal, a TextBook. American Public Health Association (1922)

    Google Scholar 

  36. Allen, K.: Sewerage and Sewage Disposal. American Public Health Association (1930)

    Google Scholar 

  37. Selvakumar, A., Field, R., Burgess, E., Amick, R.: Exfiltration in sanitary sewer systems in the US. Urban Water J. 1(3), 227–234 (2004)

    Article  Google Scholar 

  38. Swamee, P.K.: Design of sewer line. J. Environ. Eng. 127(9), 776–781 (2001)

    Article  Google Scholar 

  39. Mokhatab, S., Mak, J.Y., Valappil, J.V., Wood, D.A.: Handbook of Liquefied Natural Gas. Gulf Professional Publishing (2013)

    Google Scholar 

  40. Adhikary, K.B., Pang, S., Staiger, M.P.: Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. B Eng. 39(5), 807–815 (2008)

    Article  Google Scholar 

  41. Al-Salem, S., Lettieri, P.: Kinetic study of high density polyethylene (HDPE) pyrolysis. Chem. Eng. Res. Des. 88(12), 1599–1606 (2010)

    Article  Google Scholar 

  42. Postlethwaite, J., Tinker, E., Hawrylak, M.: Erosion-corrosion in slurry pipelines. Corrosion 30(8), 285–290 (1974)

    Article  Google Scholar 

  43. Cerisier, P., Porterie, B., Kaiss, A., Cordonnier, J.: Transport and sedimentation of solid particles in Bénard hexagonal cells. Eur. Phys. J. E 18(1), 85–93 (2005)

    Article  Google Scholar 

  44. Van, O.W.: Pneumatic tube system. Google Patents (1973)

    Google Scholar 

  45. Lang, H.: Pneumatic tube conveyor system. Google Patents (1993)

    Google Scholar 

  46. Beltrop, H., Teutenberg, J., Hilbig, M.: Pneumatic tube installation for posting samples of material. Google Patents (1983)

    Google Scholar 

  47. Grosswiller, L., Anders, W.G., Mannella, L.F.: Pneumatic tube system. Google Patents (1994)

    Google Scholar 

  48. Kruyer J, Redberger P, Ellis H (1967) The pipeline flow of capsules. Part 9. Journal of Fluid Mechanics 30 (3):513–531

    Google Scholar 

  49. Tomita, Y., Yamamoto, M., Funatsu, K.: Motion of a single capsule in a hydraulic pipeline. J. Fluid Mech. 171, 495–508 (1986)

    Article  MATH  Google Scholar 

  50. Feng, J., Huang, P., Joseph, D.: Dynamic simulation of the motion of capsules in pipelines. J. Fluid Mech. 286, 201–227 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Liu, H.: Pneumatic capsule pipeline basic concept, practical considerations, and current research. In: Mid-Continent Transportation Symposium 2000 Proceedings. Citeseer (2000)

    Google Scholar 

  52. Liu, H., Zuniga, R., Richards, J.L.: Economic Analysis of Coal Log Pipeline Transportation of Coal. Capsule Pipeline Research Center (1993)

    Google Scholar 

  53. Liu, H., Assadollahbaik, M.: Feasibility of using hydraulic capsule pipeline to transport coal. J. Pipelines 1(4), 295–306 (1981)

    Google Scholar 

  54. Liu, H., Marrero, T.R.: Coal log pipeline technology: an overview. Powder Technol. 94(3), 217–222 (1997)

    Article  Google Scholar 

  55. Liu, H.: Feasibility of using pneumatic capsule pipelines in New York City for underground freight transport. In: Pipeline Engineering and Construction: What's on the Horizon?, pp. 1–12 (2004)

    Google Scholar 

  56. Liu, H., Marrero, T.: Coal Log Pipeline: A New Process to Transport and Burn Coal. Missouri Univ, Columbia (USA) (1988)

    Google Scholar 

  57. Gorton, I., Wynne, A., Liu, Y., Yin, J.: Components in the Pipeline. IEEE Softw. 28(3), 34–40 (2011)

    Article  Google Scholar 

  58. Potter, S.C., Clarke, L., Curwen, V., Keenan, S., Mongin, E., Searle, S.M., Stabenau, A., Storey, R., Clamp, M.: The ensemble analysis pipeline. Genome Res. 14(5), 934–941 (2004)

    Article  Google Scholar 

  59. Yu, W., Jafari, R.: Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number. Wiley (2019)

    Google Scholar 

  60. Razvarz, S., Jafari, R.: ICA and ANN modeling for photocatalytic removal of pollution in wastewater. Math. Comput. Appl. 22(3), 38 (2017a)

    Google Scholar 

  61. Jafari, R., Razvarz, S., Gegov, A.: Neural network approach to solving fuzzy nonlinear equations using Z-numbers. IEEE Trans. Fuzzy Syst. (2019)

    Google Scholar 

  62. Razvarz, S., Jafari, R.: Intelligent techniques for photocatalytic removal of pollution in wastewater. J. Electr. Eng. 5(1), 321–328 (2017b)

    Google Scholar 

  63. Jafari, R., Razvarz, S., Gegov, A., Paul, S., Keshtkar, S.: Fuzzy Sumudu transform approach to solving fuzzy differential equations with Z-numbers. In: Advanced Fuzzy Logic Approaches in Engineering Science. IGI Global, pp. 18–48 (2019)

    Google Scholar 

  64. Jafari, R., Razvarz, S., Gegov, A.: A novel technique to solve fully fuzzy nonlinear matrix equations. In: International Conference on Theory and Applications of Fuzzy Systems and Soft Computing, 2018, pp. 886–892. Springer (2018)

    Google Scholar 

  65. Jafari, R., Razvarz, S., Gegov.: A fuzzy differential equations for modeling and control of fuzzy systems. In: International Conference on Theory and Applications of Fuzzy Systems and Soft Computing, 2018, pp. 732–740. Springer (2018)

    Google Scholar 

  66. Jafari, R., Yu, W., Razvarz, S., Gegov, A.: Numerical methods for solving fuzzy equations: a survey. Fuzzy Sets and Systems (2019)

    Google Scholar 

  67. Jafari, R., Razvarz, S., Gegov, A.: A new computational method for solving fully fuzzy nonlinear systems. In: International Conference on Computational Collective Intelligence, 2018, pp. 503–512. Springer (2018)

    Google Scholar 

  68. Jafari, R., Razvarz, S., Gegov, A., Paul, S.: Modeling and control of uncertain nonlinear systems. In: 2018 International Conference on Intelligent Systems (IS), 2018, pp. 168–173. IEEE (2018)

    Google Scholar 

  69. Jafari, R., Razvarz, S., Gegov, A.: A novel technique for solving fully fuzzy nonlinear systems based on neural networks. Vietn. J. Comput. Sci. 7(1), 93–107 (2020)

    Article  Google Scholar 

  70. Razvarz, S., Hernández-Rodríguez, F., Jafari, R., Gegov, A.: Foundation of Z-Numbers and Engineering Applications. In: Latin American Symposium on Industrial and Robotic Systems, 2019, pp. 15–24. Springer (2019)

    Google Scholar 

  71. Jafari, R., Contreras, M.A., Yu, W., Gegov, A.: Applications of fuzzy logic, artificial neural network and neuro-fuzzy in industrial engineering. In: Latin American Symposium on Industrial and Robotic Systems, pp. 9–14. Springer (2019)

    Google Scholar 

  72. Jafari, R., Razvarz, S., Gegov, A., Yu, W.: Fuzzy control of uncertain nonlinear systems with numerical techniques: a survey. In: UK Workshop on Computational Intelligence, 2019, pp. 3–14. Springer (2019)

    Google Scholar 

  73. Jafari, R., Razvarz, S., Yu, W., Gegov, A., Goodwin, M., Adda, M.: Genetic algorithm modeling for photocatalytic elimination of impurity in wastewater. In: Proceedings of SAI Intelligent Systems Conference, 2019, pp. 228–236. Springer (2019)

    Google Scholar 

  74. Tatchum, M., Gegov, A., Jafari, R., Razvarz, S.: Parallel distributed compensation for voltage controlled active magnetic bearing system using integral fuzzy model. In: 2018 International Conference on Intelligent Systems (IS), 2018, pp. 190–198. IEEE (2018)

    Google Scholar 

  75. Razvarz, S., Jafari, R., Gegov, A.: Solving partial differential equations with Bernstein neural networks. In: UK Workshop on Computational Intelligence, 2018, pp. 57–70. Springer (2018)

    Google Scholar 

  76. Jafarian, A., Jafari, R.: New iterative approach for solving fully fuzzy polynomials. Int. J. Fuzzy Mathe. Syst. 3(2), 75–83

    Google Scholar 

  77. Jafarian, A., Jafari, R.: New method for solving fuzzy polynomials. Adv. Fuzzy Mathe. 8(1), 25–33 (2013)

    Google Scholar 

  78. Jafarian, A., Jafari, R.: An iterative method for solving fuzzy polynomials by fuzzy neural networks (2012)

    Google Scholar 

  79. Jafarian, A., Jafari, R.: Simulation and evaluation of fuzzy polynomials by feed-back neural networks (2012)

    Google Scholar 

  80. Jafari, R., Yu, W.: Fuzzy control for uncertainty nonlinear systems with dual fuzzy equations. J. Intell. Fuzzy Syst. 29(3), 1229–1240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  81. Razvarz, S., Vargas-Jarillo, C., Jafari, R., Gegov, A.: Flow control of fluid in pipelines using PID controller. IEEE Access 7, 25673–25680 (2019)

    Article  Google Scholar 

  82. Razvarz, S., Vargas-Jarillo, C., Jafari, R.: Pipeline monitoring architecture based on observability and controllability analysis. In: 2019 IEEE International Conference on Mechatronics (ICM), 18–20 March 2019, pp. 420–423 (2019)

    Google Scholar 

  83. Razvarz, S., Jafari, R., Vargas-Jarillo, C., Gegov, A., Forooshani, M.: Leakage detection in pipeline based on second order extended Kalman filter observer. IFAC-PapersOnLine 52(29), 116–121 (2019). https://doi.org/10.1016/j.ifacol.2019.12.631

    Article  Google Scholar 

  84. Razvarz, S., Jafari, R., Vargas-Jarillo, C.: Modelling and Analysis of Flow Rate and Pressure Head in Pipelines. In: 2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 11–13 Sept. 2019. pp. 1–6 (2019)

    Google Scholar 

  85. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Yu, W.: Control of flow rate in pipeline using PID controller. In: 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), 9–11 May 2019, pp. 293–298 (2019)

    Google Scholar 

  86. Duncan, I.J., Wang, H.: Improvements in pipeline failures after World War II: Reply. Int. J. Greenhouse Gas Control 42, 700 (2015). https://doi.org/10.1016/j.ijggc.2015.09.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Jafari .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razvarz, S., Jafari, R., Gegov, A. (2021). The Importance of Pipeline Transportation. In: Flow Modelling and Control in Pipeline Systems. Studies in Systems, Decision and Control, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-030-59246-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59246-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59245-5

  • Online ISBN: 978-3-030-59246-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics