Skip to main content

Analysis of Receiver Operating Characteristic Curve Using Anthropometric Measurements for Obesity Diagnosis

  • Conference paper
  • First Online:
Systems and Information Sciences (ICCIS 2020)

Abstract

Today, obesity is a major public health problem. Obesity increases the risk of diabetes, coronary artery disease, stroke, cancer, premature death and contributes substantially the costs to society. Obesity can be diagnosed with body mass index (BMI). According to the World Health Organization, the diagnosis of overweight is made with a \(BMI\ge \) 25 Kg/m\(^2\), and obesity with a \(BMI\ge \) 30 kg/m\(^2\). The diagnosis of obesity has been made using the abdominal circumference, the hip circumference, the thickness of the skin folds and the percentage of body fat (measured directly or indirectly). Besides, the characteristic operating receiver curves (ROC) have been used to find the optimal cut-off points of hip and waist circumference for the diagnosis of obesity. The aim of this study is to evaluate the ability of anthropometric measures for diagnosing overweight and obesity. A database of 1053 subjects with 26 anthropometric measurements was used. For evaluating the predictive ability of anthropometric measures, the area under the ROC curve (\(AUC_{ROC}\)), the sensitivity (SEN), the specificity (SPE), the negative predictive value (NPV) and the positive predictive value (PPV) were calculated. The hip circumference was the anthropometric value that best detected overweight/obese subjects with a \(AUC_{ROC}=0.932\) (\(SEN=0.871\), \(SPE=0.855\), \(PPV=0.536\) and \(NPV=0.972\)) and an optimal cut-off point of 97.2 cm for recognition of obesity. The findings reported in this research suggest that the diagnosis of obesity can be made with anthropometric measurements. In the future, machine learning techniques, such as: k-means, neural networks or support vector machines; will be explored for the detection of overweight and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altuve, M., Severeyn, E., Wong, S.: Adaptation of five indirect insulin sensitivity evaluation methods to three populations: Metabolic syndrome, athletic and normal subjects. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4555–4558 (2014)

    Google Scholar 

  2. Altuve, M., Severeyn, E., Wong, S.: Unsupervised subjects classification using insulin and glucose data for insulin resistance assessment. In: 2015 20th Symposium on Signal Processing, Images and Computer Vision (STSIVA), pp. 1–7 (2015)

    Google Scholar 

  3. Anoop, S., Misra, A., Bhatt, S.P., Gulati, S., Mahajan, H., Prabakaran, G.: High plasma glucagon levels correlate with waist-to-hip ratio, suprailiac skinfold thickness, and deep subcutaneous abdominal and intraperitoneal adipose tissue depots in nonobese Asian Indian males with type 2 diabetes in North India. J. Diab. Res. 2017 (2017)

    Google Scholar 

  4. Anusruti, A., Jansen, E.H., Gao, X.Y., Xuan, H.B., Schoettker, B.: Longitudinal associations of body mass index, waist circumference, and waist-to-hip ratio with biomarkers of oxidative stress in older adults: results of a large cohort study. Obes. Facts 13(1), 66–76 (2020)

    Google Scholar 

  5. Aschner, P., Buendía, R., Brajkovich, I., Gonzalez, A., Figueredo, R., Juarez, X.E., Uriza, F., Gomez, A.M., Ponte, C.I.: Determination of the cutoff point for waist circumference that establishes the presence of abdominal obesity in Latin American men and women. Diabet. Res. Clin. Pract. 93(2), 243–247 (2011)

    Article  Google Scholar 

  6. Ashwell, M., Gunn, P., Gibson, S.: Waist-to-height ratio is a better screening tool than waist circumference and bmi for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes. Rev. 13(3), 275–286 (2012)

    Article  Google Scholar 

  7. Bener, A., Yousafzai, M.T., Darwish, S., Al-Hamaq, A.O., Nasralla, E.A., Abdul-Ghani, M.: Obesity index that better predict metabolic syndrome: body mass index, waist circumference, waist hip ratio, or waist height ratio. J. Obes. 2013 (2013)

    Google Scholar 

  8. Bomberg, E., Birch, L., Endenburg, N., German, A., Neilson, J., Seligman, H., Takashima, G., Day, M.: The financial costs, behaviour and psychology of obesity: a one health analysis. J. Comp. Pathol. 156(4), 310–325 (2017)

    Article  Google Scholar 

  9. Bratke, H., Bruserud, I.S., Brannsether, B., Abmus, J., Bjerknes, R., Roelants, M., Juliusson, P.: Timing of menarche in norwegian girls: associations with body mass index, waist circumference and skinfold thickness. BMC Pediatr. 17(1), 138 (2017)

    Article  Google Scholar 

  10. Castro, A.V.B., Kolka, C.M., Kim, S.P., Bergman, R.N.: Obesity, insulin resistance and comorbidities? mechanisms of association. Arq. Bras. Endocrinol. Metabologia 58(6), 600–609 (2014)

    Article  Google Scholar 

  11. Cheng, C.H., Ho, C.C., Yang, C.F., Huang, Y.C., Lai, C.H., Liaw, Y.P.: Waist-to-hip ratio is a better anthropometric index than body mass index for predicting the risk of type 2 diabetes in Taiwanese population. Nutr. Res. 30(9), 585–593 (2010)

    Article  Google Scholar 

  12. Cheng, Y.H., Tsao, Y.C., Tzeng, I.S., Chuang, H.H., Li, W.C., Tung, T.H., Chen., J.Y.: Body mass index and waist circumference are better predictors of insulin resistance than total body fat percentage in middle-aged and elderly Taiwanese. Medicine 96(39), e8126 (2017)

    Google Scholar 

  13. Herrera, H., Rebato, E., Arechabaleta, G., Lagrange, H., Salces, I., Susanne, C.: Body mass index and energy intake in venezuelan university students. Nutr. Res. 23(3), 389–400 (2003)

    Article  Google Scholar 

  14. Huxley, R., Mendis, S., Zheleznyakov, E., Reddy, S., Chan., J.: Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Euro. J. Clin. Nutr. 64(1), 16–22 (2010)

    Google Scholar 

  15. Imai, A., Komatsu, S., Ohara, T., Kamata, T., Yoshida, J., Miyaji, K., Takewa, M., Kodama, K.: Visceral abdominal fat accumulation predicts the progression of noncalcified coronary plaque. Atherosclerosis 222(2), 524–529 (2012)

    Article  Google Scholar 

  16. Kriemler, S., Puder, J., Zahner, L., Roth, R., Meyer, U., Bedogni, G.: Estimation of percentage body fat in 6-to 13-year-old children by skinfold thickness, body mass index and waist circumference. Br. J. Nutr. 104(10), 1565–1572 (2010)

    Article  Google Scholar 

  17. Lê, K.A., Ventura, E.E., Fisher, J.Q., Davis, J.N., Weigensberg, M.J., Punyanitya, M., Hu, H.H., Nayak, K.S., Goran, M.I.: Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diab. Care 34(2), 485–490 (2011)

    Article  Google Scholar 

  18. Marusteri, M., Bacarea, V.: Comparing groups for statistical differences: how to choose the right statistical test? Biochem. Medic 20(1), 15–32 (2010)

    Article  Google Scholar 

  19. Mirmiran, P.: Body mass index as a measure of percentage body fat prediction and excess adiposity diagnosis among iranian adolescents. Arch. Iran. Med. 17(6), 400 (2014)

    Google Scholar 

  20. Misra, A., Chowbey, P., Makkar, B.M., Vikram, N.K., Wasir, J.S., Chadha, D., Joshi, S.R.: Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management. J. Assoc. Phys. India 57(2), 163–170 (2009)

    Google Scholar 

  21. Ng, C., Elliott, M., Riosmenna, F., Cunningham, S.: Beyond recent BMI: BMI exposure metrics and their relationship to health. SSM-Population Health, p. 100547 (2020)

    Google Scholar 

  22. de Oliveira, C.M.C., Kubrusly, M., Mota, R.S., Choukroun, G., Neto, J.B., da Silva, C.A.B.: Adductor pollicis muscle thickness: a promising anthropometric parameter for patients with chronic renal failure. J. Renal Nutr. 22(3), 307–316 (2012)

    Article  Google Scholar 

  23. Reitsma, J.B., Glas, A.S., Rutjes, A.W., Scholten, R.J., Bossuyt, P.M., Zwinderman, A.H.: Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J. Clin. Epidemiol. 58(10), 982–990 (2005)

    Article  Google Scholar 

  24. Ronnecke, E., Vogel, M., Bussler, S., Grafe, N., Jurkutat, A., Schlingmann, M., Koerner, A., Kiess, W.: Age-and sex-related percentiles of skinfold thickness, waist and hip circumference, waist-to-hip ratio and waist-to-height ratio: results from a population-based pediatric cohort in germany (life child). Obes. Facts 12(1), 25–40 (2019)

    Article  Google Scholar 

  25. Selcuk, A., Bulucu, F., Kalafat, F., Cakar, M., Demirbas, S., Karaman, M., Ay, S.A., Saglam, K., Balta, S., Demirkol, S., Arslan, E.: Skinfold thickness as a predictor of arterial stiffness: obesity and fatness linked to higher stiffness measurements in hypertensive patients. Clin. Exp. Hypertens. 35(6), 459–464 (2013)

    Article  Google Scholar 

  26. Shin, H.Y., Lee, D.C., Chu, S.H., Jeon, J.Y., Lee, M.K., Im, J.A., Lee, J.W.: Chemerin levels are positively correlated with abdominal visceral fat accumulation. Clin. Endocrinol. 77(1), 47–50 (2012)

    Article  Google Scholar 

  27. Trijsburg, L., Geelen, A., Hollman, P.C., Hulshof, P.J., Feskens, E.J., van’t Veer, P., Boshuizen, H.C., de Vries, J.H.: BMI was found to be a consistent determinant related to misreporting of energy, protein and potassium intake using self-report and duplicate portion methods. Public Health Nutr. 20(4), 598–607 (2017)

    Google Scholar 

  28. Velásquez, J., Wong, S., Encalada, L., Herrera, H., Severeyn, E.: Lipid-anthropometric index optimization for insulin sensitivity estimation. In: Romero, E., Lepore, N., García-Arteaga, J.D., Brieva, J. (eds.) 11th International Symposium on Medical Information Processing and Analysis, vol. 9681, pp. 195–204. International Society for Optics and Photonics, SPIE (2015)

    Google Scholar 

  29. Wang, Y., McPherson, K., Marsh, T., Gortmaker, S., Brown, M.: Health and economic burden of the projected obesity trends in the USA and the UK. Lancet (London, Engl.) 378(9793), 815–825 (2011)

    Article  Google Scholar 

  30. Who, E.C.: Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet (London, Engl.) 363(9403), 157 (2004)

    Google Scholar 

  31. Williams, E., Mesidor, M., Winters, K., Dubbert, P., Wyatt, S.: Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr. Obes. Rep. 4, 363–370 (2015)

    Article  Google Scholar 

  32. Wyatt, S., Winters, K., Dubbent, P.: Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Am. J. Med. Sci. 331(4), 166–174 (2006)

    Article  Google Scholar 

  33. Yki-Järvinen, H.: Liver fat in the pathogenesis of insulin resistance and type 2 diabetes. Dig. Dis. 28(1), 203–209 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the Research and Development Deanery of the Simón Bolívar University (DID) and the Research Direction of the Ibagué University. Full acknowledgement is given to David Powers, author of “Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation” (BioInfo Publications™).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Severeyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Severeyn, E., Velásquez, J., Herrera, H., Wong, S., Cruz, A.L. (2021). Analysis of Receiver Operating Characteristic Curve Using Anthropometric Measurements for Obesity Diagnosis. In: Botto-Tobar, M., Zamora, W., Larrea Plúa, J., Bazurto Roldan, J., Santamaría Philco, A. (eds) Systems and Information Sciences. ICCIS 2020. Advances in Intelligent Systems and Computing, vol 1273. Springer, Cham. https://doi.org/10.1007/978-3-030-59194-6_7

Download citation

Publish with us

Policies and ethics