Skip to main content

Foraging Capacities, Behaviors and Strategies of Otariids and Odobenids

  • 409 Accesses

Part of the Ethology and Behavioral Ecology of Marine Mammals book series (EBEMM)

Abstract

Fur seals, sea lions and the walrus (Odobenus rosmarus) are breath-hold divers that rely on swimming at depth to feed at sea. As their diving capacities are more limited than phocids, otariids and odobenids are geographically constrained to highly productive environments and relatively shallow dive depths. They are also mostly coastal species, central place foragers with relatively limited foraging ranges. Diving patterns and strategies are diverse among the otariid group—although fur seals tend to be more pelagic and sea lions more benthic divers—, and driven by extrinsic factors such as the type of habitat they occupy, environmental factors, intra- or inter-specific density-dependent competition, predation risk and the behavior of the prey they feed on; as well as intrinsic factors such as age, sex, reproduction status, size and experience. There are usually several foraging strategies present within a species, and individuals tend to specialize to one of these strategies, with a degree of adaptability to changing conditions possible. Diving behaviors and strategies define the feeding success and foraging efficiency of individuals, and as such their capacities to successfully survive and reproduce in their environment. The diversity of these behaviors within otariid and odobenid populations are likely evolutionary stable strategies that provide a buffer under changing environmental conditions.

Keywords

  • Diving physiology
  • Diving behavior
  • Energetics
  • Foraging strategies
  • Otariids
  • Odobenids
  • Fur seals
  • Sea lions
  • Walrus

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-59184-7_4
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-59184-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11

References

  • Acquarone M, Born EW, Speakman JR (2006) Field metabolic rates of Walrus (Odobenus rosmarus) measured by the doubly labeled water method. Aquat Mamm 32:363–369

    CrossRef  Google Scholar 

  • Andrews RD, Jones DR, Williams JD, Thorson PH, Oliver GW, Costa DP, LeBoeuf BJ (1997) Heart rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol 200:2083–2095

    CAS  PubMed  CrossRef  Google Scholar 

  • Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958

    PubMed  CrossRef  Google Scholar 

  • Arnould J, Costa D (2006) Sea lions in drag, fur seals incognito: insights from the otariid deviants. In: Sea lions of the world: proceedings of the symposium sea lions of the world: conservation and research in the 21st century, Citeseer

    Google Scholar 

  • Arnould JPY, Hindell MA (2001) Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus). Can J Zool 79:35–48

    CrossRef  Google Scholar 

  • Arnould JPY, Boyd IL, Speakman JR (1996) The relationship between foraging behaviour and energy expenditure in Antarctic fur seals. J Zool (Lond) 239:769–782

    CrossRef  Google Scholar 

  • Arthur B, Hindell M, Bester M, Trathan P, Jonsen I, Staniland I, Oosthuizen WC, Wege M, Lea M-A (2015) Return customers: foraging site fidelity and the effect of environmental variability in wide-ranging Antarctic fur seals. PLoS One 10:e0120888

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Arthur B, Hindell M, Bester MN, Oosthuizen WC, Wege M, Lea M-A (2016) South for the winter? Within-dive foraging effort reveals the trade-offs between divergent foraging strategies in a free-ranging predator. Funct Ecol 30:1623–1637

    CrossRef  Google Scholar 

  • Augé AA et al (2011) In the shallow end: diving behaviour of recolonising female New Zealand sea lions (Phocarctos hookeri) around the Otago Peninsula. Can J Zool 89(12):1195–1205

    CrossRef  Google Scholar 

  • Austin D, Bowen WD, McMillan JI, Iverson SJ (2006) Linking movement, diving, and habitat to foraging success in a large marine predator. Ecology 87:3095–3108

    PubMed  CrossRef  Google Scholar 

  • Bailleul F et al (2005) Differences in foraging strategy and maternal behaviour between two sympatric fur seal species at the Crozet Islands. Mar Ecol Prog Ser 293:273–282

    CrossRef  Google Scholar 

  • Battaile BC, Sakamoto KQ, Nordstrom CA, Rosen DAS, Trites AW (2015a) Accelerometers identify new behaviors and show little difference in the activity budgets of lactating northern fur seals (Callorhinus ursinus) between breeding islands and foraging habitats in the eastern Bering Sea. PLoS One 10:e0118761

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Battaile BC et al (2015b) Foraging a new trail with northern fur seals (Callorhinus ursinus): Lactating seals from islands with contrasting population dynamics have different foraging strategies, and forage at scales previously unrecognized by GPS interpolated dive data. Mar Mamm Sci 31(4):1494–1520

    CrossRef  Google Scholar 

  • Baylis AMM (2008) Seasonal and colony differences in the foraging ecology of New Zealand fur seals (Arctocephalus forsteri)

    Google Scholar 

  • Baylis AMM, Page B, Peters K, McIntosh R, Mckenzie J, Goldsworthy S (2005) The ontogeny of diving behaviour in New Zealand fur seal pups (Arctocephalus forsteri). Can J Zool 83:1149–1161

    CrossRef  Google Scholar 

  • Baylis AMM et al (2012) Individual foraging site fidelity in lactating New Zealand fur seals: continental shelf vs. oceanic habitats. Mar Mamm Sci 28(2):276–294

    CrossRef  Google Scholar 

  • Baylis AMM, Orben RA, Arnould JPY, Christiansen F, Hays GC, Staniland IJ (2015a) Disentangling the cause of a catastrophic population decline in a large marine mammal. Ecology 96:2834–2847

    PubMed  CrossRef  Google Scholar 

  • Baylis AMM, Orben RA, Arnould JPY, Peters K, Knox T, Costa DP, Staniland IJ (2015b) Diving deeper into individual foraging specializations of a large marine predator, the southern sea lion. Oecologia 179:1053–1065

    CAS  PubMed  CrossRef  Google Scholar 

  • Baylis AMM et al (2016) Sexual segregation in habitat use is smaller than expected in a highly dimorphic marine predator, the southern sea lion. Mar Ecol Prog Ser 554:201–211

    CrossRef  Google Scholar 

  • Baylis AMM, Orben RA, Costa DP, Tierney M, Brickle P, Staniland IJ (2017) Habitat use and spatial fidelity of male south American sea lions during the non-breeding period. Ecol Evol 7:3992–4002

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Baylis AMM et al (2018) Geographic variation in the foraging behaviour of South American fur seals. Mar Ecol Prog Ser 596:233–245

    CrossRef  Google Scholar 

  • Beauplet G et al (2004) Foraging ecology of subantarctic fur seals Arctocephalus tropicalis breeding on Amsterdam Island: seasonal changes in relation to maternal characteristics and pup growth. Mar Ecol Prog Ser 273:211–225

    CrossRef  Google Scholar 

  • Benoit-Bird KJ, Battaile BC, Heppell SA, Hoover B, Irons D, Jones N, Kuletz KJ, Nordstrom CA, Paredes R, Suryan RM, Waluk CM, Trites AW (2013) Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. PLoS One 8:e53348

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bost CA, Handrich Y, Butler PJ, Fahlman A, Halsey LG, Woakes AJ, Ropert-Coudert Y (2007) Changes in dive profiles as an indicator of feeding success in king and Adélie penguins. Deep Sea Res II 54:248–255

    CrossRef  Google Scholar 

  • Boyd IL (1996) Temporal scales of foraging in a marine predator. Ecology 77:426–434

    CrossRef  Google Scholar 

  • Boyd IL (1999) Foraging and provisioning in Antarctic fur seals: interannual variability in time-energy budgets. Behav Ecol 10:198–208

    CrossRef  Google Scholar 

  • Boyd IL (2002) Energetics: consequences for fitness. In: Hoelzel AR (ed) Marine mammal biology: an evolutionary approach. Blackwell Sciences, Oxford, Malden

    Google Scholar 

  • Boyd IL, Croxall JP (1992) Diving behaviour of lactating Antarctic fur seals. Can J Zool 70(5):919–928

    CrossRef  Google Scholar 

  • Boyd IL, Croxall JP (1996) Dive durations in pinnipeds and seabirds. Can J Zool 74:1696–1705

    CrossRef  Google Scholar 

  • Boyd IL, McCafferty DJ, Reid K, Taylor R, Walker TR (1998) Dispersal of male and female Antarctic fur seals (Arctocephalus gazella). Can J Fish Aquat Sci 55:845–852

    CrossRef  Google Scholar 

  • Boyd IL, Bevan RM, Woakes AJ, Butler PJ (1999) Heart rate and behavior of fur seals: implications for measurements of field energetics. Am J Phys 276:H844–H857

    CAS  Google Scholar 

  • Burns JM (1999) The development of diving behavior in juvenile Weddell seals: pushing physiological limits in order to survive. Can J Zool 77:737–747

    CrossRef  Google Scholar 

  • Burns JM, Castellini MA (1996) Physiological and behavioral determinants of the aerobic dive limit in Weddell seal (Leptonychotes weddellii) pups. J Comp Physiol B 166:473–483

    CrossRef  Google Scholar 

  • Butler PJ, Bevan RM, Woakes AJ, Croxall JP, Boyd IL (1995) The use of data loggers to determine the energetics and physiology of aquatic birds and mammals. Braz J Med Biol Res 28:1307–1317

    CAS  PubMed  Google Scholar 

  • Calkins DG, Becker EF, Pitcher KW (1998) Reduced body size of female Steller Sea lions from a declining population in the Gulf of Alaska. Mar Mamm Sci 14:232–244

    CrossRef  Google Scholar 

  • Campagna C et al (2001) Movements and location at sea of South American sea lions (Otaria flavescens). J Zool (Lond) 257:205–220

    CrossRef  Google Scholar 

  • Carter MID, Bennett KA, Embling CB, Hosegood PJ, Russell DJ (2016) Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds. Movement Ecol 4:25

    CrossRef  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136

    CAS  PubMed  CrossRef  Google Scholar 

  • Chilvers B (2008a) Foraging site fidelity of lactating New Zealand Sea lions. J Zool 276:28–36

    CrossRef  Google Scholar 

  • Chilvers BL (2008b) New Zealand Sea lions Phocarctos hookeri and squid trawl fisheries: bycatch problems and management options. Endang Species Res 5:193–204

    CrossRef  Google Scholar 

  • Chilvers BL (2009) Foraging locations of female New Zealand sea lions (Phocarctos hookeri) from a declining colony. N Z J Ecol 33(2):106–113

    Google Scholar 

  • Chilvers B (2017) Stable isotope signatures of whisker and blood serum confirm foraging strategies for female New Zealand Sea lions (Phocarctos hookeri) derived from telemetry. Can J Zool 95:955–963

    CAS  CrossRef  Google Scholar 

  • Chilvers BL (2018) Preliminary assessment of the foraging behaviour and population dynamics of a cryptic population of the endangered New Zealand sea lion. N Z J Ecol 42(1):48–57

    Google Scholar 

  • Chilvers BL, Wilkinson IS (2009) Diverse foraging strategies in lactating New Zealand Sea lions. Mar Ecol Prog Ser 378:299–308

    CrossRef  Google Scholar 

  • Chilvers B et al (2005) Summer foraging areas for lactating New Zealand sea lions Phocarctos hookeri. Mar Ecol Prog Ser 304:235–247

    CrossRef  Google Scholar 

  • Costa C (1993) The relationship between reproductive and foraging energetics and the evolution of the pinnipedia. Symp Zool Soc Lond 66:293–313

    Google Scholar 

  • Costa D, Gales N (2000) Foraging energetics and diving behavior of lactating New Zealand Sea lions, Phocarctos hookeri. J Exp Biol 203:3655–3665

    CAS  PubMed  CrossRef  Google Scholar 

  • Costa DP, Gales NJ (2003) Energetics of a benthic diver: seasonal foraging ecology of the Australian sea lion, Neophoca cinerea. Ecol Monogr 73:27–43

    CrossRef  Google Scholar 

  • Costa DP, Gentry RL (1986) Free-ranging energetics of northern fur seals. In: Gentry RL, Kooyman GL (eds) Fur seals: maternal strategies on land and at sea. Princeton University Press, Princeton, NJ, pp 79–101

    CrossRef  Google Scholar 

  • Costa DP, Williams TM (1999) Marine mammals energetics. In: Reynolds JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Costa DP, Croxall JP, Duck CD (1989) Foraging energetics of Antarctic fur seals in relation to changes in prey availability. Ecology 70:596–606

    CrossRef  Google Scholar 

  • Costa DP, Gales NJ, Crocker DE (1998) Blood volume and diving ability of the New Zealand Sea lion, Phocarctos hookeri. Physiol Zool 71:208–213

    CAS  PubMed  CrossRef  Google Scholar 

  • Costa DP, Goebel ME, Sterling JT (2000) Foraging energetics and diving behavior of the Antarctic fur seal, Arctocephalus gazella at Cape Shirreff, Livingston Island. In: Davisons W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for a wider ecological understanding. New Zealand Natural Sciences Press, Christchurch, New-Zealand, pp 77–84

    Google Scholar 

  • Costa DP, Gales NJ, Goebel ME (2001) Aerobic dive limit: how often does it occur in nature? Comp Biochem Physiol A 129:771–783

    CAS  CrossRef  Google Scholar 

  • Costa DP, Kuhn CE, Weise MJ, Shaffer SA, Arnould JPY (2004) When does physiology limit the foraging behaviour of freely diving mammals? Int Congr Ser 1275:359–366

    CrossRef  Google Scholar 

  • Crocker D, Gales NJ, Costa DP (2001) Swimming speed and foraging strategies of New Zealand Sea lions (Phocarctos hookeri). J Zool (Lond) 254:267–277

    CrossRef  Google Scholar 

  • Dalton AJM, Rosen DAS, Trites AW (2014) Season and time of day affect the ability of accelerometry and the doubly labeled water methods to measure energy expenditure in northern fur seals (Callorhinus ursinus). J Exp Mar Biol Ecol 452:125–136

    CrossRef  Google Scholar 

  • David JHM, Rand RW (1986) Attendance behaviour of South African fur seals. In: Gentry RL, Kooyman GL (eds) Fur seals: maternal strategies on land and at sea. Princeton University Press, Princeton, NJ, pp 126–141

    CrossRef  Google Scholar 

  • Davis RW (2014) A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B 184:23–53

    PubMed  CrossRef  Google Scholar 

  • Davis RW, Fuiman LA, Williams TM, Collier SO, Hagey WP, Kanatous SB, Kohin S, Horning M (1999) Hunting behavior of a marine mammal beneath the Antarctic fast ice. Science 283:993–996

    CAS  PubMed  CrossRef  Google Scholar 

  • de Albernaz TL, Secchi ER, de Oliveira LR, Botta S (2017) Ontogenetic and gender-related variation in the isotopic niche within and between three species of fur seals (genus Arctocephalus). Hydrobiologia 787:123–139

    CrossRef  Google Scholar 

  • de Bruyn PJN et al (2009) Bathymetry and frontal system interactions influence seasonal foraging movements of lactating subantarctic fur seals from Marion Island. Mar Ecol Prog Ser 394:263–276

    CrossRef  Google Scholar 

  • Doidge DW, Croxall JP (1989) Factors affecting weaning weight in Antarctic fur seals, Arctocephalus gazella at South Georgia. Polar Biol 9:155–160

    CrossRef  Google Scholar 

  • Drago M, Franco-Trecu V, Cardona L, Inchausti P, Tapia W, Páez-Rosas D (2016) Stable isotopes reveal long-term fidelity to foraging grounds in the Galapagos Sea lion (Zalophus wollebaeki). PLoS One 11. https://doi.org/10.1371/journal.pone.0147857

  • Dragon AC, Monestiez P, Bar-Hen A, Guinet C (2010) Linking foraging behaviour to physical oceanographic structures: southern elephant seals and mesoscale eddies east of Kerguelen Islands. Prog Oceanogr 87:61

    CrossRef  Google Scholar 

  • Fahlman A, Wilson R, Svard C, Rosen DAS, Trites AW (2008) Activity and diving metabolism correlate in Steller Sea lion Eumetopias jubatus. Aquat Biol 2:75–84

    CrossRef  Google Scholar 

  • Fea NI, Harcourt R, Lalas C (1999) Seasonal variation in the diet ofNew Zealand fur seals (Arctocephalus forsteri) at Otago peninsula, New Zealand. Wildl Res 26:147–160

    CrossRef  Google Scholar 

  • Feldkamp SD (1987) Swimming in the California Sea lion: morphometrics, drag and energetics. J Exp Biol 131:117–135

    CAS  PubMed  CrossRef  Google Scholar 

  • Feldkamp SD, DeLong RL, Antonelis GA (1989) Diving patterns of California sea lions, Zalophus californianus. Can J Zool 67:872–883

    CrossRef  Google Scholar 

  • Foo D, Semmens JM, Arnould JPY, Dorville N, Hoskins AJ, Abernathy K (2016) Testing optimal foraging theory models on benthic divers. Anim Behav 112:127

    CrossRef  Google Scholar 

  • Fowler SL, Costa DP, Arnould JPY, Gales NJ, Kuhn CE (2006) Ontogeny of diving behaviour in the Australian sea lion: trials of adolescence in a late bloomer. J Anim Ecol 75:358–367

    PubMed  CrossRef  Google Scholar 

  • Fowler SL, Costa DP, Arnould JPY, Gales NJ, Burns JM (2007) Ontogeny of oxygen stores and physiological diving capability in Australian sea lions. Funct Ecol 21:922–935

    CrossRef  Google Scholar 

  • Francis J, Boness D, Ochoa-Acuna H (1998) A protected foraging and attendance cycle in female Juan Fernandez fur seals. Mar Mamm Sci 14:552–574

    CrossRef  Google Scholar 

  • Gallo-Reynoso JP, Figueroa-Carranza A-L, Le Boeuf B (2008) Foraging behavior of lactating Guadalupe fur seal females. In: Lorenzo C, Espinoza E, Ortega J (eds) Avances en el Estudio de los Mamíferos de México, vol 2. Publicaciones Especiales, Mexico, pp 595–614

    Google Scholar 

  • Garde E et al (2018) Diving behavior of the Atlantic walrus in high Arctic Greenland and Canada. J Exp Mar Biol Ecol 500:89–99

    CrossRef  Google Scholar 

  • Gentry RL, Kooyman GL (eds) (1986) Fur seals - maternal strategies on land and at sea. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Gentry RL, Kooyman GL, Goebel ME (1986) Feeding and diving behavior of nothern fur seals. In: Gentry RL, Kooyman GL (eds) Fur seals: maternal strategies on land and at sea. Princeton University Press, Princeton, pp 61–78

    CrossRef  Google Scholar 

  • Georges JY, Bonadonna F, Guinet C (2000a) Foraging habitat and diving activity of lactating Subantarctic fur seals in relation to sea-surface temperatures at Amsterdam Island. Mar Ecol Prog Ser 196:291–304

    CrossRef  Google Scholar 

  • Georges J-Y, Tremblay Y, Guinet C (2000b) Seasonal diving behaviour in lactating subantarctic fur seals on Amsterdam Island. Polar Biol 23:59–69

    CrossRef  Google Scholar 

  • Gerlinsky CD, Trites AW, Rosen DAS (2014) Steller sea lions (Eumetopias jubatus) have greater blood volumes, higher diving metabolic rates and a longer aerobic dive limit when nutritionally stressed. J Exp Biol 217(5):769–778

    CAS  PubMed  Google Scholar 

  • Gjertz I, Griffiths D, Krafft BA, Lydersen C, Wiig O (2001) Diving and haul-out patterns of walruses Odobenus rosmarus on Svalbard. Polar Biol 24(5):314–319

    CrossRef  Google Scholar 

  • Gleiss AC, Wilson RP, Shepard ELC (2011) Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol 2:23–33

    CrossRef  Google Scholar 

  • Goldsworthy S, Hindell M, Crowley H (1997) Diet and diving behaviour of sympatric fur seals Arctocephalus gazella and Arctocephalus tropicalis at Macquarie Island. In: Marine mammal research in the Southern Hemisphere

    Google Scholar 

  • Goundie ET, Rosen DA, Trites AW (2015) Dive behaviour can predict metabolic expenditure in Steller Sea lions. Conserv Physiol 3:1

    CrossRef  CAS  Google Scholar 

  • Halsey LG (2017) Relationships grow with time: a note of caution about energy expenditure-proxy correlations, focussing on accelerometry as an example. Funct Ecol 31:1176–1183

    CrossRef  Google Scholar 

  • Halsey L, Blackburn T, Butler P (2006) A comparative analysis of the diving behaviour of birds and mammals. Funct Ecol 20:889–899

    CrossRef  Google Scholar 

  • Halsey LG, Green JA, Wilson RP, Frappell PB (2009) Accelerometry to estimate energy expenditure during activity: best practice with data loggers. Physiol Biochem Zool 82:396–404

    CAS  PubMed  CrossRef  Google Scholar 

  • Harcourt R, Hindell M, Bell DG, Waas JR (2000) Three-dimensional dive profiles of free-ranging Weddell seals. Polar Biol 23:479–487

    CrossRef  Google Scholar 

  • Harcourt RG, Bradshaw CJA, Dickson K, Davis LS (2002) Foraging ecology of a generalist predator, the female New Zealand fur seal. Mar Ecol Prog Ser 227:11–24

    CrossRef  Google Scholar 

  • Heerah K, Woillez M, Fablet R, Garren F, Martin S, De Pontual H (2017) Coupling spectral analysis and hidden Markov models for the segmentation of behavioural patterns. Movement Ecol 5:20

    CrossRef  Google Scholar 

  • Hindell MA, Harcourt R, Waas JR, Thompson D (2002) Fine-scale three-dimensional spatial use by diving, lactating female Weddell seals Leptonychotes weddellii. Mar Ecol Prog Ser 242:275–284

    CrossRef  Google Scholar 

  • Hindell MA, McMahon CR, Bester MN, Boehme L, Costa D, Fedak MA et al (2016) Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere 7(5):1

    CrossRef  Google Scholar 

  • Hindle AG, Young BL, Rosen DAS, Haulena M, Trites AW (2010) Dive response differs between shallow- and deep-diving Steller Sea lions (Eumetopias jubatus). J Exp Mar Biol Ecol 394:141–148

    CrossRef  Google Scholar 

  • Hindle AG, Mellish JAE, Horning M (2011) Aerobic dive limit does not decline in an aging pinniped. J Exp Zool A Ecol Genet Physiol 315:544–552

    PubMed  CrossRef  Google Scholar 

  • Hines WGS (1987) Evolutionary stable strategies: a review of basic theory. Theor Popul Biol 31:195–272

    CAS  PubMed  CrossRef  Google Scholar 

  • Hooker SK, Miller PJO, Johnson MP, Cox OP, Boyd IL (2005) Ascent exhalations of Antarctic fur seals: a behavioural adaptation for breath–hold diving? Proc R Soc Lond B 272:355–363

    Google Scholar 

  • Horning M (2012) Constraint lines and performance envelopes in behavioral physiology: the case of the aerobic dive limit. Front Physiol 3. https://doi.org/10.3389/fphys.2012.00381

  • Horning M, Trillmich F (1997) Ontogenty of diving behaviour in the Galapagos fur seal. Behaviour 134:1211–1257

    CrossRef  Google Scholar 

  • Hoskins AJ, Arnould JPY (2014) Relationship between long-term environmental fluctuations and diving effort of female Australian fur seals. Mar Ecol Prog Ser 511:285–295

    CrossRef  Google Scholar 

  • Hoskins AJ, Costa DP, Arnould JPY (2015) Utilisation of intensive foraging zones by female Australian fur seals. PLoS One 10(2):e0117997

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Hoskins AJ et al (2017) Foraging niche separation in sympatric temperate-latitude fur seal species. Mar Ecol Prog Ser 566:229–241

    CrossRef  Google Scholar 

  • Houston AI, Carbone C (1992) The optimal allocation of time during the diving cycle. Behav Ecol 3:255–265

    CrossRef  Google Scholar 

  • Hückstädt LA, Tift MS, Riet-Sapriza F, Franco-Trecu V, Baylis AM, Orben RA, Arnould JP, Sepulveda M, Santos-Carvallo M, Burns JM (2016) Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the south American sea lion (Otaria byronia). J Exp Biol 219:2320–2330

    PubMed  Google Scholar 

  • Hurley JA, Costa DP (2001) Standard metabolic rate at the surface and during trained submersions in adult California Sea lions (Zalophus californianus). J Exp Biol 204:3273–3281

    CAS  PubMed  CrossRef  Google Scholar 

  • Iwata T, Sakamoto KQ, Edwards EWJ, Staniland IJ, Trathan PN, Goto Y, Sato K, Naito Y, Takahashi A (2015) The influence of preceding dive cycles on the foraging decisions of Antarctic fur seals. Biol Lett 11:20150227

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jay CV, Farley SD, Garner GW (2001) Summer diving behavior of male walruses in Bristol Bay, Alaska. Mar Mamm Sci 17(3):617–631

    CrossRef  Google Scholar 

  • Jeanniard du Dot T, Guinet C, Arnould JPY, Speakman JR, Trites AW (2016a) Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct Ecol 31:377–386

    CrossRef  Google Scholar 

  • Jeanniard du Dot T, Trites AW, Arnould JPY, Speakman JB, Guinet C (2016b) Flipper strokes can predict energy expenditure and locomotion costs in free-ranging northern and Antarctic fur seals. Sci Rep 6:33912

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jeanniard du Dot T, Trites AW, Arnould JPY, Guinet C (2017a) Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals. PLoS One 12:e0174001

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Jeanniard du Dot T, Trites AW, Arnould JPY, Speakman JR, Guinet C (2017b) Activity-specific metabolic rates for diving, transiting, and resting at sea can be estimated from time–activity budgets in free-ranging marine mammals. Ecol Evol 7:2969–2976

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jeanniard du Dot T, Trites AW, Arnould JPY, Speakman JR, Guinet C (2018) Trade-offs between foraging efficiency and pup feeding rate of lactating northern fur seals in a declining population. Mar Ecol Prog Ser 600:207–222

    CrossRef  Google Scholar 

  • Jeglinski JW, Werner C, Robinson PW, Costa DP, Trillmich F (2012) Age, body mass and environmental variation shape the foraging ontogeny of Galapagos Sea lions. Mar Ecol Prog Ser 453:279–296

    CrossRef  Google Scholar 

  • Joy R, Dowd MG, Battaile BC, Lestenkof PM, Sterling JT, Trites AW, Routledge RD (2015) Linking northern fur seal dive behavior to environmental variables in the eastern Bering Sea. Ecosphere 6:art75

    CrossRef  Google Scholar 

  • Kernaléguen L, Arnould JPY, Guinet C, Cherel Y (2015a) Determinants of individual foraging specialization in large marine vertebrates, the Antarctic and subantarctic fur seals. J Anim Ecol 84:1081–1091

    PubMed  CrossRef  Google Scholar 

  • Kernaléguen L, Cherel Y, Knox TC, Baylis AM, Arnould JP (2015b) Sexual niche segregation and gender-specific individual specialisation in a highly dimorphic marine mammal. PLoS One 10(8). https://doi.org/10.1371/journal.pone.0133018

  • Kirkman SP et al (2016) Foraging behavior of subantarctic fur seals supports efficiency of a marine reserve’s design. PLoS One 11(5):e0152370

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kirkman SP, Costa DP, Harrison A-L, Kotze PGH, Oosthuizen WH, Weise M, Botha JA, Arnould JPY (2019) Dive behaviour and foraging effort of female Cape fur seals Arctocephalus pusillus pusillus. R Soc Open Sci 6(10):191369

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kirkwood R et al (2006) At-sea movements and habitat use of adult male Australian fur seals (Arctocephalus pusillus doriferus). Can J Zool 84(12):1781–1788

    CrossRef  Google Scholar 

  • Knox TC, Baylis AM, Arnould JP (2018) Foraging site fidelity in male Australian fur seals. Mar Biol 165:108

    CrossRef  Google Scholar 

  • Kooyman GL (1965) Techniques used in measuring diving capacities of Weddell seals. Polar Rec 12:391–394

    CrossRef  Google Scholar 

  • Kooyman GL (1989) Diverse divers: physiology and behavior. Springer, Berlin; New York

    CrossRef  Google Scholar 

  • Kooyman GL, Wahrenbrock EA, Castellini MA, Davis RW, Sinnett EE (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. J Comp Physiol 138:335–346

    CAS  CrossRef  Google Scholar 

  • Kooyman GL, Castellini MA, Davis RW, Maue RA (1983) Aerobic diving limits of immature Weddell seals. J Comp Physiol 151:171–174

    CrossRef  Google Scholar 

  • Kramer DL (1988) The behavioral ecology of air breathing by aquatic animals. Can J Zool 66:89–94

    CrossRef  Google Scholar 

  • Kuhn CE (2011) The influence of subsurface thermal structure on the diving behavior of northern fur seals (Callorhinus ursinus) during the breeding season. Mar Biol 158(3):649–663

    CrossRef  Google Scholar 

  • Kuhn CE, Costa DP (2006) Identifying and quantifying prey consumption using stomach temperature change in pinnipeds. J Exp Biol 209:4524–4532

    PubMed  CrossRef  Google Scholar 

  • Kuhn C, Costa D (2014) Interannual variation in the at-sea behavior of California Sea lions (Zalophus californianus). Mar Mamm Sci 30. https://doi.org/10.1111/mms.12110

  • Kuhn CE, Crocker DE, Tremblay Y, Costa DP (2009a) Time to eat: measurements of feeding behaviour in a large marine predator, the northern elephant seal Mirounga angustirostris. J Anim Ecol 78:513–523

    PubMed  CrossRef  Google Scholar 

  • Kuhn CE, Johnson DS, Ream RR, Gelatt TS (2009b) Advances in the tracking of marine species: using GPS locations to evaluate satellite track data and a continuous-time movement model. Mar Ecol Prog Ser 393:97–109

    CrossRef  Google Scholar 

  • Kuhn CE, Tremblay Y, Ream RR, Gelatt TS (2010a) Coupling GPS tracking with dive behavior to examine the relationship between foraging strategy and fine-scale movements. Integr Comp Biol 50:E94

    Google Scholar 

  • Kuhn CE, Tremblay Y, Ream RR, Gelatt TS (2010b) Coupling GPS tracking with dive behavior to examine the relationship between foraging strategy and fine-scale movements of northern fur seals. Endang Species Res 12:125–139

    CrossRef  Google Scholar 

  • Ladds MA, Thompson AP, Slip DJ, Hocking DP, Harcourt RG (2016) Seeing it all: evaluating supervised machine learning methods for the classification of diverse otariid behaviours. PLoS One 11:e0166898

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ladds MA, Rosen DA, Slip DJ, Harcourt RG (2017a) Proxies of energy expenditure for marine mammals: an experimental test of “the time trap”. Sci Rep 7:1–10

    CAS  CrossRef  Google Scholar 

  • Ladds MA, Rosen DA, Slip DJ, Harcourt RG (2017b) The utility of accelerometers to predict stroke rate in captive fur seals and sea lions. Biol Open 6:1396–1400

    PubMed  PubMed Central  Google Scholar 

  • Ladds MA, Slip DJ, Harcourt RG (2017c) Intrinsic and extrinsic influences on standard metabolic rates of three species of Australian otariid. Conserv Physiol 5:cow074

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lander ME et al (2020) Mixing it up in Alaska: habitat use of adult female Steller sea lions reveals a variety of foraging strategies. Ecosphere 11(2):e03021

    CrossRef  Google Scholar 

  • Lea MA et al (2002) Variability in the diving activity of Antarctic fur seals, Arctocephalus gazella, at Iles Kerguelen. Polar Biol 25:269–279

    CrossRef  Google Scholar 

  • Lea MA, Guinet C, Cherel Y, Duhamel G, Dubroca L, Pruvost P, Hindell M (2006) Impacts of climatic anomalies on provisioning strategies of a Southern Ocean predator. Mar Ecol Prog Ser 310:77–94

    CrossRef  Google Scholar 

  • Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Resp Physiol 9:277–286

    CAS  CrossRef  Google Scholar 

  • Leung ES, Chilvers BL, Nakagawa S, Robertson BC (2014) Size and experience matter: diving behaviour of juvenile New Zealand Sea lions (Phocarctos hookeri). Polar Biol 37:15–26

    CrossRef  Google Scholar 

  • Lowther AD, Goldsworthy SD (2011) Detecting alternate foraging ecotypes in Australian sea lion (Neophoca cinerea) colonies using stable isotope analysis. Mar Mamm Sci 27(3):567–586

    CrossRef  Google Scholar 

  • Lowther AD et al (2011) Creatures of habit: foraging habitat fidelity of adult female Australian sea lions. Mar Ecol Prog Ser 443:249–263

    CrossRef  Google Scholar 

  • Lowther AD, Harcourt RG, Goldsworthy SD, Stow A (2012) Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. Anim Behav 83:691–701

    CrossRef  Google Scholar 

  • Lowther AD, Harcourt RG, Page B, Goldsworthy SD (2013) Steady as he goes: at-sea movement of adult male Australian sea lions in a dynamic marine environment. PLoS One 8:e74348

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lowther AD et al (2015) Identification of motivational state in adult male Atlantic walruses inferred from changes in movement and diving behavior. Mar Mamm Sci 31(4):1291–1313

    CrossRef  Google Scholar 

  • Lunn NJ, Boyd IL, Croxall JP (1994) Reproductive performance of female Antarctic fur seals: the influence of age, breeding experience, environmental variation and individual quality. J Anim Ecol 63:827–840

    CrossRef  Google Scholar 

  • Luque SP et al (2007) Foraging behaviour of sympatric Antarctic and subantarctic fur seals: does their contrasting duration of lactation make a difference? Mar Biol 152(1):213–224

    CrossRef  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609

    CrossRef  Google Scholar 

  • Mattlin RH, Gales NJ, Costa DP (1998) Seasonal dive behaviour of lactating New Zealand fur seals (Arctocephalus forsteri). Can J Zool 76:350–360

    CrossRef  Google Scholar 

  • McDonald BI, Ponganis PJ (2013) Insights from venous oxygen profiles: oxygen utilization and management in diving California Sea lions. J Exp Biol 216:3332–3341

    CAS  PubMed  CrossRef  Google Scholar 

  • McDonald BI, Ponganis PJ (2014) Deep-diving sea lions exhibit extreme bradycardia in long-duration dives. J Exp Biol 217:1525–1534

    PubMed  CrossRef  Google Scholar 

  • McHuron EA, Robinson PW, Simmons SE, Kuhn CE, Fowler M, Costa DP (2016) Foraging strategies of a generalist marine predator inhabiting a dynamic environment. Oecol 182(4):995–1005

    CAS  CrossRef  Google Scholar 

  • McHuron EA, Peterson SH, Hückstädt LA, Melin SR, Harris JD, Costa DP (2018) The energetic consequences of behavioral variation in a marine carnivore. Ecol Evol 8:4340–4351

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • McIntyre T (2014) Trends in tagging of marine mammals: a review of marine mammal biologging studies. Afr J Mar Sci 36:409–422

    CrossRef  Google Scholar 

  • Meir JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ (2009) Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Phys Regul Integr Comp Phys 297:R927–R939

    CAS  Google Scholar 

  • Melin S, DeLong R, Siniff D (2008) The effects of El Niño on the foraging behavior of lactating California Sea lions (Zalophus californianus californianus) during the nonbreeding season. Can J Zool 86:192–206

    CrossRef  Google Scholar 

  • Merrick RL, Loughlin TR (1997) Foraging behavior of adult female and young-of-year Steller sea lions in Alaskan waters. Can J Zool 75(5):776–786

    CrossRef  Google Scholar 

  • Merrick RL et al (1994) Use of satellite-linked telemetry to study Steller sea lion and northern fur seal foraging. Polar Res 13(1):105–114

    CrossRef  Google Scholar 

  • Miller AK, Sydeman WJ (2004) Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Mar Ecol Prog Ser 281:207–216

    CrossRef  Google Scholar 

  • Miller PJO, Biuw M, Watanabe YY, Thompson D, Fedak MA (2012) Sink fast and swim harder! Round-trip cost-of-transport for buoyant divers. J Exp Biol 215:3622–3630

    PubMed  CrossRef  Google Scholar 

  • Mori Y (1998) The optimal patch use in divers: optimal time budget and the number of dive cycles during bout. J Theor Biol 190:187–199

    CrossRef  Google Scholar 

  • Mori Y, Boyd IL (2004) The behavioral basis for nonlinear functional responses and optimal foraging in Antarctic fur seals. Ecology 85:398–410

    CrossRef  Google Scholar 

  • Mueller G (2004) The foraging ecology of south American Sea lions (Otaria flavescens) on the Patagonian shelf. PhD thesis, Christian-Albrechts-Universitaet zu Kiel, Germany

    Google Scholar 

  • Muto MM, Helker VT, Angliss RP, Allen BA, Boveng PL, Breiwick JM, Cameron MF, Clapham PJ, Dahle SP, Dahlheim ME (2018) Alaska marine mammal stock assessments, 2018. In: Commerce USDo (ed) NOAA Technical Memorandum Book NMFS-AFSC-393

    Google Scholar 

  • New LF, Clark JS, Costa DP, Fleishman E, Hindell MA, Klanjšček T, Lusseau D, Kraus S, McMahon CR, Robinson PW, Schick RS, Schwarz LK, Simmons SE, Thomas L, Tyack P, Harwood J (2014) Using short-term measures of behaviour to estimate long-term fitness of southern elephant seals. Mar Ecol Prog Ser 496:99–108

    CrossRef  Google Scholar 

  • Nordstrom CA et al (2013) Foraging habitats of lactating northern fur seals are structured by thermocline depths and submesoscale fronts in the eastern Bering Sea. Deep Sea Res II Top Stud Oceanogr 88–89:78–96

    CrossRef  Google Scholar 

  • Noren SR, Jay CV, Burns JM, Fischbach AS (2015) Rapid maturation of the muscle biochemistry that supports diving in Pacific walruses (Odobenus rosmarus divergens). J Exp Biol 218(20):3319–3329

    PubMed  Google Scholar 

  • Olivier P (2015) Foraging ecology of lactating Steller Sea lions (Eumetopias jubatus) at Lovushki Island, Russia. PhD, Texas A & M University, Texas, 95pp

    Google Scholar 

  • Osman LP (2007) Population status, distribution and foraging ecology of Arctocephalus philipii (Peters 1866) at Juan Fernandez archipelago. In: Faculdad de Ciencias. Universidad Austral de Chile, Valdivia, p 107

    Google Scholar 

  • Paez-Rosas D, Villegas-Amtmann S, Costa D (2017) Intraspecific variation in feeding strategies of Galapagos Sea lions: a case of trophic specialization. PLoS One 12:e0185165

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Page B, McKenzie J, Goldsworthy SD (2005) Inter-sexual differences in New Zealand fur seal diving behaviour. Mar Ecol Prog Ser 304:249–264

    CrossRef  Google Scholar 

  • Ponganis PJ (2011) Diving mammals. Wiley, Hoboken, NJ

    CrossRef  Google Scholar 

  • Ponganis PJ (2015) Diving physiology of marine mammals and seabirds. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Ponganis PJ, Kooyman GL, Winter lM, Starke LN (1997) Heart rate and plasma lactate responses during submerged swimming and trained diving in California Sea lions, Zalophus californianus. J Comp Physiol B 167:9–16

    CAS  PubMed  CrossRef  Google Scholar 

  • Qvist J, Weber RE, Zapol WM (1981) Oxygen equilibrium properties of blood and hemoglobin of fetal and adult Weddell seals. J Appl Physiol 50:999–1005

    CAS  PubMed  CrossRef  Google Scholar 

  • Richmond JP, Burns JM, Rea LD (2006) Ontogeny of total body oxygen stores and aerobic dive potential in Steller Sea lions (Eumetopias jubatus). J Comp Physiol B 176:535–545

    PubMed  CrossRef  Google Scholar 

  • Riet-Sapriza FG et al (2013) Foraging behavior of lactating South American sea lions (Otaria flavescens) and spatial–temporal resource overlap with the Uruguayan fisheries. Deep Sea Res II Top Stud Oceanogr 88-89:106–119

    CrossRef  Google Scholar 

  • Robinson SA et al (2003) The foraging ecology of two sympatric fur seal species, Arctocephalus gazella and Arctocephalus tropicalis, at Macquarie Island during the austral summer. Mar Freshw Res 53(7):1071–1082

    CrossRef  Google Scholar 

  • Sala JE, Quintana F, Wilson RP, Dignani J, Lewis MN, Campagna C (2011) Pitching a new angle on elephant seal dive patterns. Polar Biol 34:1197

    CrossRef  Google Scholar 

  • Salton M, Kirkwood R, Slip D, Harcourt R (2019) Mechanisms for sex-based segregation in foraging behaviour by a polygynous marine carnivore. Mar Ecol Prog Ser 624:213–226

    CrossRef  Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    CAS  PubMed  CrossRef  Google Scholar 

  • Sepúlveda M et al (2015) Using satellite tracking and isotopic information to characterize the impact of South American Sea Lions on Salmonid aquaculture in Southern Chile. PLoS One 10(8):e0134926

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Shero MR et al (2012) Development of the aerobic dive limit and muscular efficiency in northern fur seals (Callorhinus ursinus). J Comp Physiol B 182(3):425–436

    CAS  PubMed  CrossRef  Google Scholar 

  • Simpkins MA, Kelly BP, Wartzok D (2001) Three-dimensional analysis of search behaviour by ringed seals. Anim Behav 62:67

    CrossRef  Google Scholar 

  • Skinner JP, Burkanov VN, Andrews RD (2012) Influence of environment, morphology, and instrument size on lactating northern fur seal Callorhinus ursinus foraging behavior on the Lovushki Islands, Russia. Mar Ecol Prog Ser 471:293–308

    CrossRef  Google Scholar 

  • Staniland IJ, Robinson SL (2008) Segregation between the sexes: Antarctic fur seals, Arctocephalus gazella, foraging at South Georgia. Anim Behav 75:1581–1590

    CrossRef  Google Scholar 

  • Staniland I, Gales N, Warren N, Robinson S, Goldsworthy S, Casper R (2010) Geographical variation in the behaviour of a central place forager: Antarctic fur seals foraging in contrasting environments. Mar Biol 157:2383–2396

    CrossRef  Google Scholar 

  • Thompson D, Fedak MA (2001) How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim Behav 61:287–296

    CrossRef  Google Scholar 

  • Thompson D, Hiby AR, Fedak MA (1993) How fast should I swim? Behavioural implications of diving physiology. Symp Zool Soc Lond 66:349–368

    Google Scholar 

  • Thompson D, Duck CD, McConnell BJ, Garrett J (1998) Foraging behaviour and diet of lactating female southen sea lions (Otaria flavescens) in the Falkland Islands. J Zool Lond 246:135–146

    CrossRef  Google Scholar 

  • Thompson D, Moss SEW, Lovell P (2003) Foraging behaviour of South American fur seals Arctocephalus australis: extracting fine scale foraging behaviour from satellite tracks. Mar Ecol Prog Ser 260:285–296

    CrossRef  Google Scholar 

  • Trillmich F (1990) The behavioral ecology of maternal effort in fur seals and sea lions. Behaviour 114:3–20

    CrossRef  Google Scholar 

  • Trillmich F, Kooyman GL (2001) Field metabolic rate of lactating female Galápagos fur seals (Arctocephalus galapagoensis): the influence of offspring age and environment. Comp Biochem Physiol A Mol Integr Physiol 129(4):741–749

    CAS  PubMed  CrossRef  Google Scholar 

  • Trillmich F et al (1986) Attendance and diving behavior of South American fur seals during El Nino in 1983. In: Gentry RL, Kooyman GL (eds) Fur seals: maternal strategies on land and at sea. Princeton University Press, Princeton, NJ, pp 153–167

    CrossRef  Google Scholar 

  • Trillmich F et al (2014) The Galapagos sea lion: adaptation to spatial and temporal diversity of marine resources within the archipelago. In: The Galapagos marine reserve. Springer, New York, pp 61–70

    CrossRef  Google Scholar 

  • Verrier D, Guinet C, Authier M, Tremblay Y, Schaffer S, Costa DP, Groscolas R, Arnould JPY (2011) The ontogeny of diving abilities in subantarctic fur seal pups: developmental trade-off in response to extreme fasting? Funct Ecol 25:818

    CrossRef  Google Scholar 

  • Villegas-Amtmann S, Costa DP (2010) Oxygen stores plasticity linked to foraging behaviour and pregnancy in a diving predator, the Galapagos Sea lion. Funct Ecol 24:785–795

    CrossRef  Google Scholar 

  • Villegas-Amtmann S, Costa DP, Tremblay Y, Salazar S, Aurioles-Gamboa D (2008) Multiple foraging strategies in a marine apex predator, the Galapagos Sea lion Zalophus wollebaeki. Mar Ecol Prog Ser 363:299–309

    CrossRef  Google Scholar 

  • Villegas-Amtmann S, Simmons SE, Kuhn CE, Huckstadt LA, Costa DP (2011) Latitudinal range influences the seasonal variation in the foraging behavior of marine top predators. PLoS One 6(8):e23166

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Villegas-Amtmann S, Jeglinski JW, Costa DP, Robinson PW, Trillmich F (2013) Individual foraging strategies reveal niche overlap between endangered Galapagos pinnipeds. PLoS One 8:e70748

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Villegas-Amtmann S, McDonald BI, Páez-Rosas D, Aurioles-Gamboa D, Costa DP (2017) Adapted to change: low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos Sea lion. Deep Sea Res II Top Stud Oceanogr 140:94–104

    CrossRef  Google Scholar 

  • Viviant M, Trites AW, Rosen DAS, Monestiez P, Guinet C (2010) Prey capture attempts can be detected in Steller Sea lions and other marine predators using accelerometers. Polar Biol 33:713–719

    CrossRef  Google Scholar 

  • Viviant M, Monestiez P, Guinet C (2014) Can we predict foraging success in a marine predator from dive patterns only? Validation with prey capture attempt data. PLoS One 9:e88503

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Viviant M, Jeanniard-du-Dot T, Monestiez P, Authier M, Guinet C (2016) Bottom time does not always predict prey encounter rate in Antarctic fur seals. Funct Ecol 30:1843–1844

    CrossRef  Google Scholar 

  • Volpov BL, Hoskins AJ, Battaile B, Viviant M, Wheatley KE, Marshall GJ, Abernathy K, Arnould JPY (2015) Identification of prey captures in Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted accelerometers: field validation with animal-borne video cameras. PLoS One 10:e0128789

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Volpov BL, Rosen DA, Hoskins AJ, Lourie HJ, Dorville N, Baylis AM, Wheatley KE, Marshall G, Abernathy K, Semmens J (2016) Dive characteristics can predict foraging success in Australian fur seals (Arctocephalus pusillus doriferus) as validated by animal-borne video. Biol Open 5:262–271

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Waite JN et al (2012) Resource partitioning by sympatric Steller sea lions and northern fur seals as revealed by biochemical dietary analyses and satellite telemetry. J Exp Mar Biol Ecol 416–417:41–54

    CrossRef  CAS  Google Scholar 

  • Weise MJ, Costa DP (2007) Total body oxygen stores and physiological diving capacity of California Sea lions as a function of sex and age. J Exp Biol 210:278–289

    PubMed  CrossRef  Google Scholar 

  • Weise MJ, Harvey JT, Costa DP (2010) The role of body size in individual-based foraging strategies of a top marine predator. Ecology 91:1004–1015

    PubMed  CrossRef  Google Scholar 

  • Werner R, Campagna C (1995) Diving behaviour of lactating southern sea lions (Otaria flavescens) in Patagonia. Can J Zool 73:1975–1982

    CrossRef  Google Scholar 

  • Wiig O, Gjertz I, Griffiths D, Lydersen C (1993) Diving patterns of an Atlantic walrus Odobenus Rosmarus Rosmarus near Svalbard. Polar Biol 13:71–72

    CrossRef  Google Scholar 

  • Winship AJ, Trites AW, Calkins DG (2001) Growth in body size of the Steller sea lion (Eumetopias jubatus). J Mammal 82:500–519

    CrossRef  Google Scholar 

  • Würsig B, Thewissen J, Kovacs KM (2017) Encyclopedia of marine mammals. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiphaine Jeanniard-du-Dot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Jeanniard-du-Dot, T., Guinet, C. (2021). Foraging Capacities, Behaviors and Strategies of Otariids and Odobenids. In: Campagna, C., Harcourt, R. (eds) Ethology and Behavioral Ecology of Otariids and the Odobenid. Ethology and Behavioral Ecology of Marine Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-59184-7_4

Download citation