Skip to main content

Biological Mechanisms of Psychosomatic Symptoms

  • Chapter
  • First Online:
Medically Unexplained Symptoms
  • 618 Accesses

Abstract

The limbic system, the emotional center of the brain, is formed by a large arc of the medial brain connected to the hypothalamus, the neuroendocrine center of the brain located at the top of the brainstem. Nerve impulses arriving at the hypothalamus trigger the release of adrenaline from the adrenal medulla and corticosteroids from the adrenal cortex. These hormones produce a variety of bodily symptoms and contribute to the changes in brain chemistry and connectivity associated with chronic stress. Neuroplasticity in the brain, particularly in the hippocampus of the limbic system, is critical for learning and storage of new information and chronic stress alters neuroplasticity by decreasing nerve growth factors and activating the immune system. Central sensitization is a type of neuroplasticity whereby repetitive incoming sensory signals are magnified by increased excitatory transmission and/or decreased inhibitory transmission. Another component of the limbic system, the amygdala is important for fear conditioning. Stress-related incoming signals to the amygdala can lead to hypersensitization of a subgroup of excitatory neurons that are normally kept in check by inhibitory feedback from neurons in the prefrontal cortex, a part of the cortex critical for planning and problem solving. An imbalance between excitation and inhibition in these neurons in the amygdala can lead to a state of chronic fear and anxiety. Human behavior, including sick behavior, is a learned response dependent on neuroplasticity and is subject to reward and punishment reinforcement just like other forms of learning.

It is not stress that kills us, it is our reaction to it.

Hans Selye [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 14.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 22.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levone BR, Cryan JF, O’Leary OF. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol Stress. 2015;1:147e155.

    Article  Google Scholar 

  2. Elliott GR, Eisdorfer C. Stress and human health. New York: Springer; 1982.

    Google Scholar 

  3. Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–30.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu LY, Coe CL, Swenson CA, et al. School examination enhances airway inflammation to antigen challenge. Am J Respir Crit Care Med. 2002;165:1062–7.

    Article  PubMed  Google Scholar 

  5. Mohd RS. Life event, stress and illness. Malays J Med Sci. 2008;15:9–18.

    Google Scholar 

  6. Rajendran K, Rao VN, Reddy MV. A profile of stressful life events among industrial neurotics and normal. NIMHANS J. 1996;14:127–32.

    Google Scholar 

  7. Cannon WB. Bodily changes in pain, hunger, fear and rage: an account of recent researches into the function of emotional excitement. New York: Appleton; 1915.

    Book  Google Scholar 

  8. Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatr. 1937;38:725–43.

    Article  Google Scholar 

  9. Lanska DJ. The Klüver-Bucy syndrome. Front Neurol Neurosci. 2018;41:41–77.

    Google Scholar 

  10. Selye H. Stress and psychiatry. Am J Psychiatry. 1956;113:423–7.

    Article  CAS  PubMed  Google Scholar 

  11. Pavlov IP. Conditioned reflexes. An investigation of the physiological activity of the cerebral cortex (translated by Anrep GV). London: Oxford University Press; 1927.

    Google Scholar 

  12. Cajal SR. The Croonian lecture: the fine structure of the nervous system. Proc R Soc Lond. 1894;Ser B55:444–67.

    Google Scholar 

  13. Milner OM, Milner B. Donald Olding Hebb: 22 July 1904-20 August 1985. Biogr Mem Fellows R Soc. 1996;42:193–204.

    Article  CAS  PubMed  Google Scholar 

  14. Obituary: Donald Olding Hebb (1904–1985) TINS, August 1986. p. 384.

    Google Scholar 

  15. Hebb DO. The organization of behavior. New York: Wiley; 1949.

    Google Scholar 

  16. Kandel ER. In search of memory. New York: WW Norton & Co; 2006.

    Google Scholar 

  17. Kempermann G, Gage FH, Aigner L, et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell. 2018;23:25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deppermann S, Storchak H, Fallgatter AJ, Ehlis AC. Stress-induced neuroplasticity: (Mal)adaptation to adverse life events in patients with PTSD – a critical overview. Neuroscience. 2014;283:166–77.

    Article  CAS  PubMed  Google Scholar 

  19. Levone BR, Cryan JF, O’Leary OF. Role of adult hippocampal neurogenesis in stress resilience. Neurobiology. 2015;1:147–55.

    Google Scholar 

  20. Micheli L, Ceccarelli M, D’Andrea G, Tirone F. Depression and adult neurogenesis: positive effects of the antidepressant fluoxetine and physical exercise. Brain Res Bull. 2018;143:181–93.

    Article  CAS  PubMed  Google Scholar 

  21. Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry. 2020. Epub Jan 3.

    Google Scholar 

  22. Park DJ, Lee SS. New insights into the genetics of fibromyalgia. Korean J Intern Med. 2017;32:984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Notaras M, van den Buuse M. Brain-derived neurotrophic factor (BDNF): novel insights into regulation and genetic variation. Neuroscientist. 2019;25:434–54.

    Article  CAS  PubMed  Google Scholar 

  24. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.

    Article  CAS  PubMed  Google Scholar 

  26. Koo JW, Duman RS. Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. Curr Opin Investig Drugs. 2009;10:664–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Neugebauer V. Amygdala pain mechanisms. Handb Exp Pharmacol. 2015;227:261–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baloh RW. Sciatica and chronic pain: past present and future. Cham: Springer; 2019. p. 71–85.

    Book  Google Scholar 

  29. Basbaum AI, Fields HL. Endogenous pain control: brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci. 1984;7:309–38.

    Article  CAS  PubMed  Google Scholar 

  30. Beecher HK. Pain in men wounded in battle. Ann Surg. 1946;123:96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Popoli M, Yan Z, McEwen B, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2013;13:22–37.

    Article  CAS  Google Scholar 

  32. McEwen BS. Stress and hippocampal plasticity. Ann Rev Neurosci. 1999;22:105–22.

    Article  CAS  PubMed  Google Scholar 

  33. Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26:7870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cerqueira JJ, Mailliet F, Almeida OF, et al. The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci. 2007;27:2781–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanacora G, Zarate CA, Krystal JH, Manji HK. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov. 2008;7:426–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Giordano R, Pellegrino M, Picu A, et al. Neuroregulation of the hypothalamus-pituitary-adrenal (HPA) axis in humans: effects of GABA-, mineralocorticoid-, and GH-secretagogue-receptor modulation. Sci World J. 2006;6:1–11.

    Article  CAS  Google Scholar 

  37. Gonda X, Petschner P, Eszlari N, et al. Effects of different stressors are modulated by different neurobiological systems: the role of GABA-A versus CB1 receeptor gene variants in anxiety and depression. Front Cell Neurosci. 2019;13:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function. Part I: principles of functional organization. Curr Neuropharmacol. 2008;6:235–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yalcin I, Barrot M. The anxiodepressive comorbidity in chronic pain. Curr Opin Anaesthesiol. 2014;27:520–7.

    Article  CAS  PubMed  Google Scholar 

  40. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419–27.

    Article  CAS  PubMed  Google Scholar 

  41. Denk F, McMahon SB, Tracey I. Pain vulnerability: a neurobiological perspective. Nat Neurosci. 2014;17(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  42. Leknes S, Tracey I. A common neurobiology for pain and pleasure. Nat Rev Neurosci. 2008;9:314–20.

    Article  CAS  PubMed  Google Scholar 

  43. Leknes S, Berna C, Lee MC, et al. The importance of context: when relative relief renders pain pleasant. Pain. 2013;154:402–10.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Patel S, Hillard CJ. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation. Eur J Neurosci. 2008;27:2821–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gorzalka BB, Hill MN, Hillard CJ. Regulation of endocannabinoid signaling by stress: implications for stress-related affective disorders. Neurosci Biobehav Rev. 2008;32:11523–160.

    Article  CAS  Google Scholar 

  46. Christensen R, Kristensen PK, Bartels EM, et al. Efficacy and safety of the weight-loss drug rimonabant: a meta analysis of randomized trials. Lancet. 2007;371:558.

    Google Scholar 

  47. Skinner BF. About behaviorism. New York: Random House; 1974. p. 20.

    Google Scholar 

  48. Skinner BF. Behavior of organisms. New York: Appleton-Century-Crofts; 1938.

    Google Scholar 

  49. Skinner BF. The technology of teaching. New York: Appleton-Century-Crofts; 1968.

    Google Scholar 

  50. Altus DE. Skinner’s utopian vision: behind and beyond Walden Two. Behav Anal. 2009;32:319–35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Baloh .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baloh, R.W. (2021). Biological Mechanisms of Psychosomatic Symptoms. In: Medically Unexplained Symptoms. Copernicus, Cham. https://doi.org/10.1007/978-3-030-59181-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59181-6_5

  • Published:

  • Publisher Name: Copernicus, Cham

  • Print ISBN: 978-3-030-59180-9

  • Online ISBN: 978-3-030-59181-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics