Skip to main content

Drug-Drug Interaction Prediction on a Biomedical Literature Knowledge Graph

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12299)

Abstract

Knowledge Graphs provide insights from data extracted in various domains. In this paper, we present an approach discovering probable drug-to-drug interactions, through the generation of a Knowledge Graph from disease-specific literature. The Graph is generated using natural language processing and semantic indexing of biomedical publications and open resources. The semantic paths connecting different drugs in the Graph are extracted and aggregated into feature vectors representing drug pairs. A classifier is trained on known interactions, extracted from a manually curated drug database used as a golden standard, and discovers new possible interacting pairs. We evaluate this approach on two use cases, Alzheimer’s Disease and Lung Cancer. Our system is shown to outperform competing graph embedding approaches, while also identifying new drug-drug interactions that are validated retrospectively.

Keywords

  • Literature mining
  • Knowledge graph
  • Path analysis
  • Knowledge discovery
  • Drug-drug interactions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/kbogas/DDI_BLKG.

  2. 2.

    https://neo4j.com/.

  3. 3.

    https://www.drugbank.ca/releases/5-0-3.

  4. 4.

    https://torchkge.readthedocs.io.

References

  1. Arnold, P., Rahm, E.: Semrep: a repository for semantic mapping. In: Datenbanksysteme für Business, Technologie und Web (BTW 2015) (2015)

    Google Scholar 

  2. Bakal, G., Talari, P., Kakani, E.V., Kavuluru, R.: Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. J. Biomed. Inform. 82, 189–199 (2018)

    CrossRef  Google Scholar 

  3. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(suppl\(\_\)1), D267–D270 (2004)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 2787–2795. Curran Associates, Inc. (2013)

    Google Scholar 

  5. Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6, e26726 (2017)

    CrossRef  Google Scholar 

  6. Karim, M.R., Cochez, M., Jares, J.B., Uddin, M., Beyan, O., Decker, S.: Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 113–123 (2019)

    Google Scholar 

  7. Lamprecht, M.R., Morrison III, B.: A combination therapy of 17\(\beta \)-estradiol and memantine is more neuroprotective than monotherapies in an organotypic brain slice culture model of traumatic brain injury. J. Neurotrauma 32(17), 1361–1368 (2015)

    CrossRef  Google Scholar 

  8. Nentidis, A., Bougiatiotis, K., Krithara, A., Paliouras, G.: Semantic integration of disease-specific knowledge. In: IEEE 33rd International Symposium on Computer Based Medical Systems (CBMS) (2020, to appear)

    Google Scholar 

  9. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  10. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML, vol. 11, pp. 809–816 (2011)

    Google Scholar 

  11. Percha, B., Altman, R.B.: Informatics confronts drug-drug interactions. Trends Pharmacol. Sci. 34(3), 178–184 (2013)

    CrossRef  Google Scholar 

  12. Percha, B., Altman, R.B.: A global network of biomedical relationships derived from text. Bioinformatics 34(15), 2614–2624 (2018)

    CrossRef  Google Scholar 

  13. Rindflesch, T.C., Fiszman, M.: The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J. Biomed. Inform. 36(6), 462–477 (2003)

    CrossRef  Google Scholar 

  14. Rohani, N., Eslahchi, C.: Drug-drug interaction predicting by neural network using integrated similarity. Sci. Rep. 9(1), 1–11 (2019)

    CrossRef  Google Scholar 

  15. Rossi, A., Firmani, D., Matinata, A., Merialdo, P., Barbosa, D.: Knowledge graph embedding for link prediction: a comparative analysis (2020)

    Google Scholar 

  16. Sang, S., et al.: GrEDeL: a knowledge graph embedding based method for drug discovery from biomedical literatures. IEEE Access 7, 8404–8415 (2018)

    CrossRef  Google Scholar 

  17. Sang, S., Yang, Z., Wang, L., Liu, X., Lin, H., Wang, J.: SemaTyP: a knowledge graph based literature mining method for drug discovery. BMC Bioinform. 19(1), 193 (2018). https://doi.org/10.1186/s12859-018-2167-5

    CrossRef  Google Scholar 

  18. Shen, Y., et al.: KMR: knowledge-oriented medicine representation learning for drug-drug interaction and similarity computation. J. Cheminform. 11(1), 22 (2019). https://doi.org/10.1186/s13321-019-0342-y

    CrossRef  Google Scholar 

  19. Shtar, G., Rokach, L., Shapira, B.: Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures. PloS One 14(8), e0219796 (2019)

    CrossRef  Google Scholar 

  20. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

Download references

Acknowledgments

This work is supported by European Union’s Horizon 2020 research and innovation programme under grant agreement No. 727658, project iASiS (http://project-iasis.eu/) (Integration and analysis of heterogeneous big data for precision medicine and suggested treatments for different types of patients). We would also like to acknowledge the help we received from the iASiS consortium for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Bougiatiotis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bougiatiotis, K., Aisopos, F., Nentidis, A., Krithara, A., Paliouras, G. (2020). Drug-Drug Interaction Prediction on a Biomedical Literature Knowledge Graph. In: Michalowski, M., Moskovitch, R. (eds) Artificial Intelligence in Medicine. AIME 2020. Lecture Notes in Computer Science(), vol 12299. Springer, Cham. https://doi.org/10.1007/978-3-030-59137-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59137-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59136-6

  • Online ISBN: 978-3-030-59137-3

  • eBook Packages: Computer ScienceComputer Science (R0)