Skip to main content

Fracking and Air Quality

  • 1168 Accesses

Abstract

The environmental impacts of fracking on the atmosphere are complex. Air pollution is caused by smoke, dust, and vapors from the hydraulic fracturing process itself, and also by the later combustion of the produced fossil fuel, which releases greenhouse gas (GHG) such as carbon dioxide (CO2) into the atmosphere that contributes to global warming and climate change. Coal combustion is a far larger GHG contributor than natural gas and petroleum produced by fracking, but coal is mined. The issues of greenhouse gas and climate change are presented and discussed in later chapters.

The air pollution associated with fracking and other oil & gas operations falls into three main categories: (1) particulate matter, (2) organic gases, and (3) nitrogen oxides. Particulate matter or PM is defined by the EPA as a mixture of solid particles and liquid droplets found in the air. These are generally divided into two size classes: PM10 consists of particulates with diameters of 10 micrometers or less, and PM2.5 consists of even smaller particles with diameters equal to or less than 2 ½ micrometers. Broadly speaking, PM10 is dust, and PM2.5 is smoke. The smaller the particle, the deeper it can travel into the lungs. Sources of PM include diesel and other engine exhaust, tire, brake and road dust, and silica dust from proppant sand. Organic gases include volatile compounds like benzene, toluene, ethylbenzene and xylenes, and light hydrocarbons such as methane, ethane, propane, and butane. Nitrogen oxides or NOx are a byproduct of high-temperature combustion.

Keywords

  • Particulate matter
  • Organic gases
  • Volatiles
  • Nitrogen oxides
  • Greenhouse gas

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen, D. T. (2014). Atmospheric emissions and air quality impacts from natural gas production and use. Annual Review of Chemical and Biomolecular Engineering, 5, 55–75.

    CrossRef  CAS  Google Scholar 

  • Allen, D. T. (2016). Emissions from oil and gas operations in the United States and their air quality implications. Journal of the Air & Waste Management Association, 66, 549–575. https://doi.org/10.1080/10962247.2016.1171263.

    CrossRef  CAS  Google Scholar 

  • Allen, D. T., Sullivan, D. W., Zavala-Araiza, D., Pacsi, A. P., Harrison, M., Keen, K., Fraser, M. P., Hill, A. D., Lamb, B. K., Sawyer, R. F., & Seinfeld, J. H. (2015). Methane emissions from process equipment at natural gas production sites in the United States: Liquid unloadings. Environmental Science & Technology, 49(1), 641–648.

    CrossRef  CAS  Google Scholar 

  • Allen, D. T., Cardoso-Saldaña, F. J., & Kimura, Y. (2017). Variability in spatially and temporally resolved emissions and hydrocarbon source fingerprints for oil and gas sources in shale gas production regions. Environmental Science & Technology, 51, 12016–12026.

    CrossRef  CAS  Google Scholar 

  • Allshouse, W. B., McKenzie, L. M., Barton, K., Brindley, S., & Adgate, J. L. (2019). Community noise and air pollution exposure during the development of a multi-well oil and gas pad. Environmental Science & Technology, 53(12), 7126–7135.

    CrossRef  CAS  Google Scholar 

  • Andreani, M., & Ménez, B. (2019). Chapter 15: New perspectives on abiotic organic synthesis and processing during hydrothermal alteration of the oceanic lithosphere. In B. Orcutt, I. Daniel, & R. Dasgupta (Eds.), Deep carbon: Past to present. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781108677950.

    CrossRef  Google Scholar 

  • Banan, Z., & Gernand, J. M. (2018). Evaluation of gas well setback policy in the Marcellus Shale region of Pennsylvania in relation to emissions of fine particulate matter. Journal of the Air & Waste Management Association, 68, 988–1000.

    CrossRef  CAS  Google Scholar 

  • Bari, M. A., & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of the Total Environment, 631/632, 627–640. https://doi.org/10.1016/j.scitotenv.2018.03.023.

    CrossRef  CAS  Google Scholar 

  • Bradley, A., & Summons, R. E. (2010). Multiple origins of methane at the Lost City hydrothermal field. Earth and Planetary Science Letters, 297, 34–41.

    CrossRef  CAS  Google Scholar 

  • Buonocore, J., Arunachalam, A., Reka, S., Yang, D., Lyon, D. R., Hull, H., O’Connell, R., Roy, A., Trask, B., & Michanowicz, D. (2019). Air quality and health impacts of oil and gas emissions in the United States. (Abstract) presentation A41D-07, AGU Fall Meeting, 9–13 December, San Francisco, CA, USA, American Geophysical Union.

    Google Scholar 

  • Butkovskyi, A., Bruning, H., Kools, S. A. E., Rijnaarts, H. H. M., & Van Wezel, A. P. (2017). Organic pollutants in shale gas flowback and produced waters: Identification, potential ecological impact, and implications for treatment strategies. Environmental Science & Technology, 51(9), 4740–4754.

    CrossRef  CAS  Google Scholar 

  • Casey, J. A., Ogburn, E. L., Rasmussen, S. G., Irving, J. K., Pollak, J., Locke, P., & Schwartz, B. S. (2015). Predictors of indoor radon concentrations in Pennsylvania, 1989–2013. Environmental Health Perspectives, 123(11), 1130–1137.

    CrossRef  CAS  Google Scholar 

  • Claypool, G. E., Threlkeld, C. N., & Magoon, L. B. (1980). Biogenic and thermogenic origins of natural gas in Cook Inlet basin, Alaska. AAPG Bulletin, 64(8), 1131–1139.

    CAS  Google Scholar 

  • Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, A. C., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet, 389(10082), 1907–1918.

    CrossRef  Google Scholar 

  • Eisele, A. P., Mukerjee, S., Smith, L. A., Thoma, E. D., Whitaker, D. A., & Oliver, K. D. (2016). Volatile organic compounds at two oil and natural gas production well pads in Colorado and Texas using passive samplers. Journal of the Air & Waste Management Association, 66, 412–419. https://doi.org/10.1080/10962247.2016.1141808.

    CrossRef  CAS  Google Scholar 

  • Franklin, M., Chau, K., Cushing, L. J., & Johnston, J. E. (2019). Characterizing flaring from unconventional oil and gas operations in south Texas using satellite observations. Environmental Science & Technology, 53(4), 2220–2228.

    CrossRef  CAS  Google Scholar 

  • Garcia-Gonzales, D. A., Shamasunder, B., & Jerrett, M. (2019). Distance decay gradients in hazardous air pollution concentrations around oil and natural gas facilities in the city of Los Angeles: A pilot study. Environmental Research, 173, 232–236.

    CrossRef  CAS  Google Scholar 

  • Goetz, J. D., Floerchinger, C., Fortner, E. C., Wormhoudt, J., Massoli, P., & Knighton, W. B. (2015). Atmospheric emission characterization of Marcellus shale natural gas development sites. Environmental Science & Technology, 49, 7012–7020.

    CrossRef  CAS  Google Scholar 

  • Goetz, J. D., Avery, A., Werden, B., Floerchinger, C., Fortner, E. C., Wormhoudt, J., Massoli, P., Herndon, S. C., Kolb, C. E., Knighton, W. B., Peischl, J., Warneke, C., de Gouw, J. A., Shaw, S. L., & DeCarlo, P. F. (2017). Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus shale. Elementa Science of the Anthropocene, 5, 1. https://doi.org/10.1525/elementa.182.

    CrossRef  Google Scholar 

  • HEI (Health Effects Institute). (2019). Human exposure to unconventional oil and gas development: A literature survey for research planning: Special report 2 (Draft for Public Comment): Boston, HEI-Energy Research Committee, 108 p. www.hei-energy.org

  • Horwell, C. J., Williamson, B. J., Donaldson, K., Le Blond, J. S., Damby, D. E., & Bowen, L. (2012). The structure of volcanic cristobalite in relation to its toxicity: Relevance for the variable crystalline silica hazard. Particle and Fibre Toxicology, 9, article no. 44. https://doi.org/10.1186/1743-8977-9-44.

    CrossRef  CAS  Google Scholar 

  • Johnson, D., Heltzel, R., & Oliver, D. (2019). Temporal variations in methane emissions from an unconventional well site. ACS Omega, 4, 3708–3715.

    CrossRef  CAS  Google Scholar 

  • Jones, J. B., & Segnit, E. R. (1972). Genesis of cristobalite and tridymite at low temperatures. Journal of the Geological Society of Australia, 18(4), 419–422. https://doi.org/10.1080/00167617208728780.

    CrossRef  CAS  Google Scholar 

  • Ladd, J. H. (2001). Chapter 4: An overview and development history of the Wattenberg field. In D. S. Anderson, J. W. Robinson, J. E. Estes-Jackson, & E. B. Coalson (Eds.), Gas in the rockies (pp. 29–42). Denver: Rocky Mountain Association of Geologists.

    Google Scholar 

  • Litovitz, A., Curtright, A., Abramzon, S., Burger, N., & Samaras, C. (2013). Estimation of regional air-quality damages from Marcellus shale natural gas extraction in Pennsylvania. Environmental Research Letters, 8, 1–8.

    CrossRef  Google Scholar 

  • Luck, B., Zimmerle, D., Vaughn, T., Lauderdale, T., Keen, K., & Harrison, M. (2019). Multiday measurements of pneumatic controller emissions reveal the frequency of abnormal emissions behavior at natural gas gathering stations. Environmental Science & Technology Letters, 6, 348–352. https://doi.org/10.1021/acs.estlett.9b00158.

    CrossRef  CAS  Google Scholar 

  • Maskrey, J. R., Insley, A. L., Hynds, E. S., & Panko, J. M. (2016). Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania. Environmental Monitoring and Assessment, 188, 410., 12 p. https://doi.org/10.1007/s10661-016-5410-4.

    CrossRef  CAS  Google Scholar 

  • Moore, C. W., Zielinska, B., Pétron, G., & Jackson, R. B. (2014). Air impacts of increased natural gas acquisition, processing, and use: A critical review. Environmental Science and Technology, 48, 8349–8359. https://doi.org/10.1021/es4053472.

    CrossRef  CAS  Google Scholar 

  • Moore, M. T., Vinson, D. S., Whyte, C. J., Eymold, W. K., Walsh, T. B., & Darrah, T. H. (2018). Differentiating between biogenic and thermogenic sources of natural gas in coalbed methane reservoirs from the Illinois Basin using noble gas and hydrocarbon geochemistry. Geological Society, London, Special Publications, 468, 151–188. https://doi.org/10.1144/SP468.8.

    CrossRef  Google Scholar 

  • Nathan, B., Golston, L., O’Brien, A., Ross, K., Harrison, W., & Tao, L. (2015). Near-field characterization of methane emission variability from a compressor station using a model aircraft. Environmental Science & Technology, 49, 7896–7903.

    CrossRef  Google Scholar 

  • Nsanzineza, R., Capps, S. L., & Milford, J. B. (2019). Modeling emissions and ozone air quality impacts of future scenarios for energy and power production in the Rocky Mountain states. Environmental Science & Technology, 53(13), 7893–7902.

    CrossRef  CAS  Google Scholar 

  • Omara, M., Zimmerman, N., Sullivan, M. R., Li, X., Ellis, A., & Cesa, R. (2018). Methane emissions from 23 natural gas production sites in the United States: Data synthesis and national estimate. Environmental Science & Technology, 52, 12915–12925.

    CrossRef  CAS  Google Scholar 

  • Pekney, N., Veloski, G., Reeder, M., Tamila, J., Rupp, E., & Wetzel, A. (2014). Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania’s Allegheny National Forest. Journal of the Air & Waste Management Association, 64(9). https://doi.org/10.1080/10962247.2014.897270.

  • Pekney, N., Reeder, M., & Mundia-Howe, M. (2018). Air quality measurements at the Marcellus shale energy and environment laboratory site. EM The Magazine for Environmental Managers, August 2018, Air & Waste Management Association, 5 p.

    Google Scholar 

  • Pétron, G., Frost, G., Miller, B. R., Hirsch, A. I., Montzka, S. A., Karion, A., Trainer, M., Sweeney, C., Andrews, A. E., Miller, L., Kofler, J., Bar-Ilan, A., Dlugokencky, E. J., Patrick, L., Moore, C. T., Jr., Ryerson, T. B., Siso, C., Kolodzey, W., Lang, P. M., Conway, T., Novelli, P., Masarie, K., Hall, B., Guenther, D., Kitzis, D., Miller, J., Welsh, D., Wolfe, D., Neff, W., & Tans, P. (2012). Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. Journal of Geophysical Research-Atmospheres, 117(D4) 19 p. https://doi.org/10.1029/2011JD016360.

  • Pétron, G., Karion, A., Sweeney, C., Miller, B. R., Montzka, S. A., Frost, G. J., Trainer, M., Tans, P., Andrews, A., Kofler, J., Helmig, D., Guenther, D., Dlugokencky, E., Lang, P., Newberger, T., Wolter, S., Hall, B., Novelli, P., Brewer, A., Conley, S., Hardesty, M., Banta, R., White, A., Noone, D., Wolfe, D., & Schnell, R. (2014). A new look at methane and non-methane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin. Journal of Geophysical Research-Atmospheres, 119, 6836–6852.

    CrossRef  Google Scholar 

  • Pinti, D. L., Gelinas, Y., Moritz, A. M., Larocque, M., & Sano, Y. (2016). Anthropogenic and natural methane emissions from a shale gas exploration area of Quebec, Canada. Science of the Total Environment, 566-567, 1329–1338.

    CrossRef  CAS  Google Scholar 

  • Ravikumar, A.P., Barlow, B., Wang, J., & Singh, D. (2019). Results of the Alberta methane measurement campaigns: New insights into oil and gas methane mitigation policy. (Abstract) presentation A41D-08, AGU Fall Meeting, 9–13 December, San Francisco, CA, USA, American Geophysical Union.

    Google Scholar 

  • Ren, X. R., Hall, D. L., Vinciguerra, T., Benish, S. E., Stratton, P. R., & Ahn, D. (2019). Methane emissions from the Marcellus shale in southwestern Pennsylvania and northern West Virginia based on 26 airborne measurements. Journal of Geophysical Research-Atmospheres, 124, 1862–1878.

    CrossRef  CAS  Google Scholar 

  • Rich, A. L., & Orimoloye, H. T. (2016). Elevated atmospheric levels of benzene and benzene-related compounds from unconventional shale extraction and processing: Human health concern for residential communities. Environmental Health Insights, 10, 75–82.

    Google Scholar 

  • Schwarz, J. P., Holloway, J. S., Katich, J. M., McKeen, S., Kort, E. A., & Smith, M. L. (2015). Black carbon emissions from the Bakken oil and gas development region. Environmental Science & Technology Letters, 2, 281–285.

    CrossRef  CAS  Google Scholar 

  • Soeder, D. J., & Kent, D. B. (2018). When oil and water mix: Understanding the environmental impacts of shale development. GSA Today, 28(9), 4–10.

    CrossRef  Google Scholar 

  • Stolper, D. A., Martini, A. M., Clog, M., Douglas, P. M., Shusta, S. S., Valentine, D. L., Sessions, A. L., & Eiler, J. M. (2015). Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochimica et Cosmochimica Acta, 161, 219–247.

    CrossRef  CAS  Google Scholar 

  • Townsend-Small, A., Marrero, J. E., Lyon, D. R., Simpson, I. J., Meinardi, S., & Blake, D. R. (2015). Integrating source apportionment tracers into a bottom-up inventory of methane emissions in the Barnett shale hydraulic fracturing region. Environmental Science & Technology, 49, 8175–8182.

    CrossRef  CAS  Google Scholar 

  • Vaughn, T. L., Bell, C. S., Pickering, C. K., Schwietzke, S., Heath, G. A., & Pétron, G. (2018). Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region. Proceedings of the National Academy of Sciences, 115, 11712–11717.

    CrossRef  CAS  Google Scholar 

  • Vinciguerra, T., Yao, S., Dadzie, J., Chittams, A., Deskins, T., & Ehrman, S. (2015). Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations. Atmospheric Environment, 110, 144–150. https://doi.org/10.1016/j.atmosenv.2015.03.056.

    CrossRef  CAS  Google Scholar 

  • Watson, T., & Bachu, S. (2009). Evaluation of the potential for gas and CO2 leakage along wellbores. SPE Drilling & Completion, 24(1), 115–126. (SPE 106817).

    CrossRef  Google Scholar 

  • Williams, P. J., Reeder, M., Pekney, N. J., Risk, D., Osborne, J., & McCawley, M. (2018). Atmospheric impacts of a natural gas development within the urban context of Morgantown, West Virginia. Science of the Total Environment, 639, 406–416. https://doi.org/10.1016/j.scitotenv.2018.04.422.

    CrossRef  CAS  Google Scholar 

  • Xu, Y., Sajja, M., & Kumar, A. (2019). Impact of the hydraulic fracturing on indoor radon concentrations in Ohio: A multilevel modeling approach. Frontiers in Public Health, 7, 76. https://doi.org/10.3389/fpubh.2019.00076.

    CrossRef  Google Scholar 

  • Zavala-Araiza, D., Sullivan, D. W., & Allen, D. T. (2014). Atmospheric hydrocarbon emissions and concentrations in the Barnett shale natural gas production region. Environmental Science & Technology, 48(9), 5314–5321. https://doi.org/10.1021/es405770h.

    CrossRef  CAS  Google Scholar 

  • Zielinska, B., Campbell, D., & Samburova, V. (2014). Impact of emissions from natural gas production facilities on ambient air quality in the Barnett shale area: A pilot study. Journal of the Air & Waste Management Association, 64, 1369–1383. https://doi.org/10.1080/10962247.2014.954735.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soeder, D.J. (2021). Fracking and Air Quality. In: Fracking and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-59121-2_5

Download citation