Skip to main content

Interferometric Synthetic Aperture Radar (InSAR) in the Context of Bridge Monitoring

  • Chapter
  • First Online:
Advances in Remote Sensing for Infrastructure Monitoring

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

The structural health of critical transport infrastructure, such as bridges, is difficult to assess and monitor. Existing methods of evaluation rely predominantly on visual inspection and/or the installation of sensors to measure the in-situ performance of structures. There are vast numbers of critical bridge structures that need to be monitored and these are often located in diverse geographical locations which are difficult and costly to access. Recent advances in satellite monitoring using Interferometric Synthetic Aperture Radar (InSAR) monitoring provide the opportunity for global coverage of assets and the measurement of displacement to sub-centimetre accuracy. Such technologies could provide bridge engineers and asset owners with insights about the health and behaviour of their assets. The key to successful implementation of InSAR monitoring of bridges lies in understanding the limitations and opportunities of InSAR, and making a clear case to satellite data providers on what specifications (resolution, frequency, processing assumptions) would unlock using such datasets for wider use in monitoring of infrastructure. This work examines the application of InSAR for bridge monitoring using case studies of several UK bridge structures. These bridge structures differ in structural form, material and environmental context, but each raise key considerations in practical application of InSAR, and the potential to spot unusual signs behaviour that would alert bridge owners to maintenance problems and potential failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Society Of Civil Engineers (ASCE). 2017. Bridge Infrastructure | Structurally Deficient Bridges | ASCE’s 2017 Infrastructure Report Card.

    Google Scholar 

  • Auer, S., S. Hinz, and R. Bamler. 2010. Ray Tracing Simulation Techniques for Understanding High Resolution SAR Images. IEEE Transactions on Geoscience and Remote Sensing 48 (3): 1445–1456.

    Article  Google Scholar 

  • Bamler, R., and P. Hartl. 1998. Synthetic Aperture Radar Interferometry. Inverse Problems 14 (4): 1–54.

    Article  Google Scholar 

  • Bamler, R., and B. Schättler. 1993. SAR Data Acquisition and Image Formation. In SAR Geocoding: Data and Systems, ed. G. Schreier, 53–102. Karlsruhe, Germany: Wichmann.

    Google Scholar 

  • Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti. 2002a. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing 40 (11): 2375–2383.

    Article  Google Scholar 

  • ———. 2002b. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing 40 (11): 2375–2383.

    Article  Google Scholar 

  • Bovenga, F., A. Belmonte, A. Refice, G. Pasquariello, R. Nutricato, D.O. Nitti, and M.T. Chiaradia. 2018. Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry. Sensors (Switzerland) 18 (5): 1–16.

    Article  Google Scholar 

  • Crosetto, M., O. Monserrat, M. Cuevas-González, N. Devanthéry, and B. Crippa. 2016. Persistent Scatterer Interferometry: A Review. ISPRS Journal of Photogrammetry and Remote Sensing 115: 78–89.

    Article  Google Scholar 

  • Cumming, I., and F. Wong. 2005. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Norwood, OH: Artech House Publishers.

    Google Scholar 

  • Cusson, D., and I. Ozkan. 2019. Satellite-based InSAR Monitoring –Validation on Victoria Bridge in Montreal, Canada. In 5th Conference in Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019), Potsdam, Germany, August 27–29, 2019.

    Google Scholar 

  • Cusson, D., K. Trischuk, G. Hewus, M. Gara, and P. Ghuman. 2017. Satellite-Based Monitoring of a Highway Bridge in Canada - Challenges, Solutions and Value. In ISHMII 2017, no. December.

    Google Scholar 

  • Davila, M., L. J. Butler, N. Gibbons, I. Brilakis, M. Z. E. B. Elshafie, and C. Middleton. 2016. Management of structural monitoring data of bridges using BIM. ICE Proceedings: Bridge Engineering, no. November, pp. 1–15.

    Google Scholar 

  • Dheenathayalan, P., D. Small, and R.F. Hanssen. 2018. 3-D Positioning and Target Association for Medium-Resolution SAR Sensors. IEEE Transactions on Geoscience and Remote Sensing 56 (11): 6841–6853.

    Article  Google Scholar 

  • Doerry, A. W. 2008. Reflectors for SAR Performance Testing (Tech. Rep.) January. Albuquerque: Sandia National Laboratories.

    Google Scholar 

  • Ferretti, A., C. Prati, and F. Rocca. 2000. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing 38 (5): 2202–2212.

    Article  Google Scholar 

  • ———. 2001. Permanent Scatters in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing 39 (1): 8–20.

    Article  Google Scholar 

  • Ferretti, A., A. Monti-Guarnieri, and C. Prati. 2007a. InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation (TM-19). ESA, no. February, p. 48.

    Google Scholar 

  • ———. 2007b. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19), Part C. ESA.

    Google Scholar 

  • Ferretti, A., A. Monti-guarnieri, C. Prati, and F. Rocca. 2007c. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19), Part B, 71. ESA.

    Google Scholar 

  • Ferretti, A., G. Savio, R. Barzaghi, A. Borghi, S. Musazzi, F. Novali, C. Prati, and F. Rocca. 2007d. Submillimeter Accuracy of InSAR Time Series: Experimental Validation. IEEE Transactions on Geoscience and Remote Sensing 45 (5): 1142–1153.

    Article  Google Scholar 

  • Gabriel, A.K., R.M. Goldstein, and H.A. Zebker. 1989. Mapping Small Elevation Changes Over Large Areas - Differential Radar Interferometry. Journal of Geophysical Research 94 (B7): 9183–9191.

    Article  Google Scholar 

  • Gernhardt, S., and S. Hinz. 2008. Advanced Displacement Estimation for PSI Using High Resolution SAR Data. International Geoscience and Remote Sensing Symposium (IGARSS) 3 (1): 1276–1279.

    Google Scholar 

  • Gisinger, C., U. Balss, R. Pail, X.X. Zhu, S. Montazeri, S. Gernhardt, and M. Eineder. 2015. Precise Three-Dimensional Stereo Localization of Corner Reflectors and Persistent Scatterers with TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing 53 (4): 1782–1802.

    Article  Google Scholar 

  • Hamill, L. 1998. Bridge Hydraulics. 1st ed. London: CRC Press (Taylor & Francis Group).

    Book  Google Scholar 

  • Hanssen, R.F. 2001. Radar Interferometry: Data Interpretation and Error Analysis. 1st ed. Netherlands: Springer.

    Book  Google Scholar 

  • Highways Agency. 2012. The Assessment of Scour and Other Hydraulic Actions at High-way Structures (BD97/12), (Tech. rep.). The Highways Agency, Transport Scotland, Welsh Government and The Department for Regional Development Northern Ireland.

    Google Scholar 

  • Hu, J., Z.W. Li, X.L. Ding, J.J. Zhu, L. Zhang, and Q. Sun. 2014. Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review. Earth-Science Reviews 133: 1–17.

    Article  Google Scholar 

  • Kirby, A., A. Kitchen, M. Escarameia, and O. Chesterton. 2015. Manual on Scour at Bridges and Other Hydraulic Structures (C742). 2nd ed. London: CIRIA.

    Google Scholar 

  • Lazecky, M., D. Perissin, M. Bakon, J. M. De Sousa, I. Hlavacova, and N. Real. 2015. Potential of Satellite InSAR Techniques for Monitoring of Bridge Deformations. In 2015 Joint Urban Remote Sensing Event (JURSE), (Lausanne, Switzerland), pp. 4–7.

    Google Scholar 

  • Lea, F., and C. R. Middleton. 2002. Reliability of Visual Inspection for Highway Bridges (Tech. Rep. CUED/D-STRUCT/TR. 201). Cambridge: Department of Engineering, University of Cambridge.

    Google Scholar 

  • Milillo, P., G. Giardina, D. Perissin, G. Milillo, A. Coletta, and C. Terranova. 2019. Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy. Remote Sensing 11 (12): 1–14.

    Article  Google Scholar 

  • Monserrat, O., M. Crosetto, M. Cuevas, and B. Crippa. 2011. The Thermal Expansion Component of Persistent Scatterer Interferometry Observations. IEEE Geoscience and Remote Sensing Letters 8 (5): 864–868.

    Article  Google Scholar 

  • Montazeri, S., F.R. González, and X.X. Zhu. 2018. Geocoding Error Correction for InSAR Point Clouds. Remote Sensing 10 (10): 1–22.

    Article  Google Scholar 

  • Moore, M., B. Phares, B. Graybeal, R. Dennis, and G. Washer. 2001. Reliability of Visual Inspection for Highway Bridges (Volume I: Final Report, Tech. Rep. FHWA-RD-01-020). McLean, VA: U.S. Department of Transport.

    Google Scholar 

  • Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K.P. Papathanassiou. 2013. A Tutorial on Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Magazine: 6–43.

    Google Scholar 

  • Perissin, D., Z. Wang, and H. Lin. 2012. Shanghai Subway Tunnels and Highways Monitoring Through Cosmo-SkyMed Persistent Scatterers. ISPRS Journal of Photogrammetry and Remote Sensing 73: 58–67. Additional reference from which some figures are also used (PhD thesis).

    Article  Google Scholar 

  • Press_Association. 2015. Tadcaster bridge over river Wharfe collapses during flooding – video (available at: https://www.theguardian.com/environment/video/2015/dec/30/tadcaster-bridge-river-wharfe-collapses-flooding-video).

  • Qin, X., M. Liao, M. Yang, and L. Zhang. 2017. Monitoring Structure Health of Urban Bridges with Advanced Multi-Temporal InSAR Analysis. Annals of GIS 23 (4): 293–302.

    Article  Google Scholar 

  • Qin, X., X. Ding, and M. Liao. 2018. Three-Dimensional Deformation Monitoring and Structural Risk Assessment of Bridges by Integrating Observations from Multiple SAR Sensors. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS), (Valencia, Spain), 1384–1387. IEEE.

    Google Scholar 

  • Quin, G., and P. Loreaux. 2013. Submillimeter Accuracy of Multipass Corner Reflector Monitoring by PS Technique. IEEE Transactions on Geoscience and Remote Sensing 51 (3): 1775–1783.

    Article  Google Scholar 

  • RAC Foundation. 2019. Bridge Maintenance Backlog Grows (Tech. rep.) London, UK: RAC Foundation

    Google Scholar 

  • Ruck, G., and C. Krichbaum. 1968. Radar Cross Section Handbook Supplement (Tech. Rep.). Washington, DC: Advanced Research Projects Agency.

    Google Scholar 

  • Sarmap SA, SARscape®, 2014.

    Google Scholar 

  • Selvakumaran, S. 2019. Interferometric Synthetic Aperture Radar for Remote Satellite Monitoring of Bridges. https://doi.org/10.17863/CAM.51027

  • Selvakumaran, S., S. Plank, C. Geiß, C. Rossi, and C. Middleton. 2018. Remote Monitoring to Predict Bridge Scour Failure Using Interferometric Synthetic Aperture Radar (InSAR) Stacking Techniques. International Journal of Applied Earth Observation and Geoinformation 73: 463–470. https://doi.org/10.1016/j.jag.2018.07.004.

    Article  Google Scholar 

  • Selvakumaran, S., C. Rossi, A. Marinoni, G. Webb, J. Bennetts, E. Barton, S. Plank, and C.R. Middleton. 2020. Combined InSAR and Terrestrial Structural Monitoring of Bridges. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/tgrs.2020.2979961.

  • Soergel, U., H. Gross, A. Thiele, and U. Thoennessen. 2006. Extraction of Bridges Over Water in High-Resolution InSAR Data. Photogrammetric Computer Vision 36.

    Google Scholar 

  • Sousa, J.J., and L. Bastos. 2013. Multi-Temporal SAR Interferometry Reveals Acceleration of Bridge Sinking Before Collapse. Natural Hazards and Earth System Science 13 (3): 659–667.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvakumaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selvakumaran, S., Rossi, C., Barton, E., Middleton, C.R. (2021). Interferometric Synthetic Aperture Radar (InSAR) in the Context of Bridge Monitoring. In: Singhroy, V. (eds) Advances in Remote Sensing for Infrastructure Monitoring. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-030-59109-0_8

Download citation

Publish with us

Policies and ethics