Skip to main content

Remote Sensing of Deformation and Disturbance to Monitor and Assess Infrastructure in Urban Environments

  • Chapter
  • First Online:
Advances in Remote Sensing for Infrastructure Monitoring

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

  • 716 Accesses

Abstract

Tectonic and land surface processes deform and disturb infrastructure and urban environments. Several remote sensing techniques have been developed to measure and monitor these processes. Disasters also can damage or destroy infrastructure and urban environments and one disaster can cascade into subsequent disasters. This chapter discusses hazards and disasters affecting infrastructure. Applicable remote sensing methods and interfaces are described for accessing data and data products. The chapter then presents case studies that illustrate the use of the remote sensing data for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bardet, J.P., D. Ballantyne, G.E.C. Bell, A. Donnellan, S. Foster, T.S. Fu, J. List, R.G. Little, T.D. O’Rourke, and M.C. Palmer. 2010. Expert review of water system pipeline breaks in the City of Los Angeles—Summer 2009. Report to Los Angeles City Council 13: 2010.

    Google Scholar 

  • Bennett, V., C. Jones, D. Bekaert, J. Bond, A. Helal, J. Dudas, M. Gabr, and T. Abdoun. 2017. Deformation monitoring for the assessment of Sacramento Delta Levee performance. In Geo-Risk 2017, pp. 22–31.

    Google Scholar 

  • Bock, Y., D.C. Agnew, P. Fang, J.F. Genrich, B.H. Hager, T.A. Herring, K.W. Hudnut, R.W. King, S. Larsen, J.B. Minster, and K. Stark. 1993. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements. Nature 361 (6410): 337.

    Article  Google Scholar 

  • Brandenberg, S.J., P. Wang, C.C. Nweke, K. Hudson, S. Mazzoni, Y. Bozorgnia, K.W. Hudnut, C.A. Davis, S.K. Ahdi, F. Zareian, and J. Fayaz. 2019. Preliminary report on engineering and geological effects of the July 2019 Ridgecrest earthquake sequence. Geotechnical Extreme Event Reconnaissance Association, pp. 1–69.

    Google Scholar 

  • Brooks, B.A., G. Bawden, D. Manjunath, C. Werner, N. Knowles, J. Foster, J. Dudas, and D. Cayan. 2012. Contemporaneous subsidence and levee overtopping potential, Sacramento-San Joaquin Delta, California. San Francisco Estuary and Watershed Science 10 (1): 1–18.

    Article  Google Scholar 

  • Buenker, J.M., and R.A. Robinson. 2014. A history of tunneling in Los Angeles, North American tunneling: 2014 Proceedings, Los Angeles, p. 1119.

    Google Scholar 

  • DeLong, S.B., A. Donnellan, D.J. Ponti, R.S. Rubin, J.J. Lienkaemper, C.S. Prentice, T.E. Dawson, G. Seitz, D.P. Schwartz, K.W. Hudnut, and C. Rosa. 2016. Tearing the terroir: Details and implications of surface rupture and deformation from the 24 August 2014 M6. 0 South Napa earthquake. California. Earth and Space Science 3 (10): 416–430.

    Article  Google Scholar 

  • Dixon, T.H., F. Amelung, A. Ferretti, F. Novali, F. Rocca, R. Dokka, G. Sella, S.W. Kim, S. Wdowinski, and D. Whitman. 2006. Space geodesy: Subsidence and flooding in New Orleans. Nature 441 (7093): 587.

    Article  Google Scholar 

  • Donnellan, A., B.H. Hager, and R.W. King. 1993. Discrepancy between geologic and geodetic deformation rates in the Ventura basin. Nature 366: 333–336.

    Article  Google Scholar 

  • Donnellan, A., L. Grant Ludwig, J.W. Parker, J.B. Rundle, J. Wang, M. Pierce, G. Blewitt, and S. Hensley. 2015. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake. Earth and Space Science 2 (9): 378–385.

    Article  Google Scholar 

  • Donnellan, A., R. Arrowsmith, and V. Langenheim. 2016. Select airborne techniques for mapping and problem solving. In Applied geology in California, ed. R. Anderson and H. Ferriz, 541–566. Belmont: Star Publishing.

    Google Scholar 

  • Donnellan, A., J. Parker, C. Milliner, T.G. Farr, M. Glasscoe, Y. Lou, and B. Hawkins. 2018. UAVSAR and optical analysis of the Thomas fire scar and Montecito debris flows: Case study of methods for disaster response using remote sensing products. Earth and Space Science 5: 339–347.

    Article  Google Scholar 

  • Donnellan, A., G. Lyzenga, A. Ansar, C. Goulet, J. Wang, and M. Pierce. 2020. Targeted high-resolution structure from motion observations over the M6.4 and M7.1 ruptures of the Ridgecrest earthquake sequence. Seismological Research Letters 91 (4): 2087–2095.

    Article  Google Scholar 

  • Field, E.H., J.R. Arrowsmith, G.P. Biasi, P. Bird, T.E. Dawson, K.R. Felzer, D.D. Jackson, K.M. Johnson, T.H. Jordan, C. Madden, A.J. Michael, K.R. Milner, and M.T. Page. 2014. Uniform California earthquake rupture forecast, Version 3 (UCERF3)—The time-independent model. Bulletin of the Seismological Society of America 104 (3): 1122–1180. https://doi.org/10.1785/0120130164.

    Article  Google Scholar 

  • Field, E.H., T.H. Jordan, M.T. Page, K.R. Milner, B.E. Shaw, T.E. Dawson, G.P. Biasi, T. Parsons, J.L. Hardebeck, A.J. Michael, and R.J. Weldon. 2017. A synoptic view of the third uniform California earthquake rupture forecast (UCERF3). Seismological Research Letters 88 (5): 1259–1267.

    Article  Google Scholar 

  • Fielding, E.J., M. Simons, S. Owen, P. Lundgren, H. Hua, P. Agram, Z. Liu, A. Moore, P. Milillo, J. Polet, and S. Samsonov. 2014. Rapid imaging of earthquake ruptures with combined geodetic and seismic analysis. Procedia Technology 16: 876–885.

    Article  Google Scholar 

  • Heflin, M., A. Donnellan, J. Parker, G. Lyzenga, A. Moore, L. Grant Ludwig, J. Rundle, J. Wang, and M. Pierce. 2020. Automated estimation and tools to extract positions, velocities, breaks, and seasonal terms from daily GNSS measurements: Illuminating nonlinear salton trough deformation. Earth and Space Science. 7 (7): e2019EA000644.

    Article  Google Scholar 

  • Jones, L., K. Aki, M. Celebi, A. Donnellan, J. Hall, R. Harris, E. Hauksson, T. Heaton, S. Hough, K. Hudnut, K. Hutton, M. Johnston, W. Joyner, H. Kanamori, G. Marshall, A. Michael, J. Mori, M. Murray, D. Ponti, P. Reasenberg, D. Schwartz, L. Seeber, A. Shakal, R. Simpson, H. Thio, M. Todorovska, M. Trifunic, D. Wald, and M.L. Zobak. 1994. The magnitude 6.7 Northridge California, earthquake of January 17, 1994. Science 266: 389–397.

    Article  Google Scholar 

  • Khorrami, M., B. Alizadeh, E. Ghasemi Tousi, M. Shakerian, Y. Maghsoudi, and P. Rahgozar. 2019. How groundwater level fluctuations and geotechnical properties lead to asymmetric subsidence: A PSInSAR analysis of land deformation over a transit corridor in the Los Angeles metropolitan area. Remote Sensing 11 (4): 377.

    Article  Google Scholar 

  • Land Subsidence Committee. 2014. 2013 Annual Report of the Land Subsidence Committee. Wildermuth Environmental, Inc.

    Google Scholar 

  • Lindqwister, U.J., J.F. Zumberge, F.H. Webb, and G. Blewitt. 1991. Few millimeter precision for baselines in the California permanent GPS geodetic array. Geophysical Research Letters 18 (6): 1135–1138.

    Article  Google Scholar 

  • Lynch, D.K., and T. Deane. 2019. A moving mystery. Civil Engineering 89 (7): 54–63.

    Google Scholar 

  • Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute. 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364 (6433): 138.

    Article  Google Scholar 

  • NISAR, 2018. NASA-ISRO SAR (NISAR) mission science Users’ handbook. NASA Jet Propulsion Laboratory. 261 pp.

    Google Scholar 

  • Parsons, T., Johnson, K.M., Bird, P., Bormann, J., Dawson, T.E., Field, E.H., Hammond, W.C., Herring, T.A., McCaffrey, R., Shen, Z.K. and Thatcher, W.R., 2013. Appendix C—Deformation models for UCERF3.

    Google Scholar 

  • Price, E.J., and D.T. Sandwell. 1998. Small-scale deformations associated with the 1992 Landers, California, earthquake mapped by synthetic aperture radar interferometry phase gradients. Journal of Geophysical Research: Solid Earth 103 (B11): 27001–27016.

    Article  Google Scholar 

  • Riel, B., M. Simons, D. Ponti, P. Agram, and R. Jolivet. 2018. Quantifying ground deformation in the Los Angeles and Santa Ana Coastal Basins due to groundwater withdrawal. Water Resources Research 54 (5): 3557–3582.

    Article  Google Scholar 

  • Ross, Z.E., B. Idini, Z. Jia, O.L. Stephenson, M. Zhong, X. Wang, Z. Zhan, M. Simons, E.J. Fielding, S.H. Yun, and E. Hauksson. 2019a. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science 366 (6463): 346–351.

    Article  Google Scholar 

  • Ross, Z.E., D.T. Trugman, E. Hauksson, and P.M. Shearer. 2019b. Searching for hidden earthquakes in Southern California. Science 364 (6442): 767–771.

    Article  Google Scholar 

  • Rymer, M.J., J.A. Treiman, K.J. Kendrick, J.J. Lienkaemper, R.J. Weldon, R. Bilham, M. Wei, E.J. Fielding, J.L. Hernandez, B.P. Olson, and P.J. Irvine. 2011. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake (No. 2010–1333). US Geological Survey.

    Google Scholar 

  • Smith, R., and R. Knight. 2019. Modeling land subsidence using InSAR and airborne electromagnetic data. Water Resources Research 55 (4): 2801–2819.

    Article  Google Scholar 

  • Yun, S., P.S. Agram, E.J. Fielding, M. Simons, F. Webb, A. Tanaka, P. Lundgren, S.E. Owen, P.A. Rosen, and S. Hensley. 2011. Damage proxy map from InSAR coherence applied to February 2011 M6. 3 Christchurch Earthquake, 2011 M9. 0 Tohoku-oki Earthquake, and 2011 Kirishima Volcano Eruption. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Yun, S.H., S.E. Owen, H. Hua, P. Milillo, E.J. Fielding, K.W. Hudnut, T.E. Dawson, T.P. Mccrink, M.J. Jo, W.D. Barnhart and G.J.M. Manipon. 2014. Rapid response products of the ARIA project for the M6.0 August 24, 2014 South Napa Earthquake. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Yun, S.H., E.J. Fielding, F.H. Webb, and M. Simons, and California Institute of Technology. 2015a. Damage proxy map from interferometric synthetic aperture radar coherence. U.S. Patent 9,207,318.

    Google Scholar 

  • Yun, S.H., K. Hudnut, S. Owen, F. Webb, M. Simons, P. Sacco, E. Gurrola, G. Manipon, C. Liang, E. Fielding, and P. Milillo. 2015b. Rapid damage mapping for the 2015 M w 7.8 Gorkha earthquake using synthetic aperture radar data from COSMO–SkyMed and ALOS-2 satellites. Seismological Research Letters 86 (6): 1549–1556.

    Article  Google Scholar 

  • Zebker, H., P. Shankar, and A. Hooper. 2007. InSAR remote sensing over decorrelating terrains: Persistent scattering methods. In 2007 IEEE Radar Conference. IEEE, pp. 717–722.

    Google Scholar 

  • Zeng, Y., and Z.K. Shen. 2016. A fault-based model for crustal deformation, fault slip rates, and off-fault strain rate in California. Bulletin of the Seismological Society of America 106 (2): 766–784.

    Article  Google Scholar 

  • Zhou, Q. 2016. Digital elevation model and digital surface model. In International encyclopedia of geography: people, the earth, environment and technology: People, the earth, environment and technology, 1–17. Hoboken: Wiley.

    Google Scholar 

Download references

Acknowledgements

The work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The work has been supported by the following NASA programs: Earth Surface and Interior (ESI), Advance Information Systems Technology (AIST), Geodetic Imaging, and Advancing Collaborative Connections for Earth System Science (ACCESS). This work could not have been accomplished without the contributions of numerous other investigators. These include Co-Investigators Gregory Lyzenga, Jay Parker, John Rundle, Lisa Grant Ludwig, Jun Wang, Marlon Pierce, Michael Heflin, and Robert Granat. Work on the Mundo Mud Spring is led by David Lynch of Shannon and Wilson. Numerous interns have contributed to work described here including Lindsay LaBrecque and Nathan Pulver for the landslide work, and Juan Carlos Beltran for the subsidence study. Cathleen Jones assisted with processing and analysis of UAVSAR for constructing time series of subsidence. Postdoctoral fellow Chris Milliner led development of optical techniques for separating types of materials in debris flows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Donnellan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Donnellan, A. (2021). Remote Sensing of Deformation and Disturbance to Monitor and Assess Infrastructure in Urban Environments. In: Singhroy, V. (eds) Advances in Remote Sensing for Infrastructure Monitoring. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-030-59109-0_6

Download citation

Publish with us

Policies and ethics