Skip to main content

Landslide Activity Assessment of a Subtropical Area by Integrating InSAR, Landslide Inventory, Airborne LiDAR, and UAV Investigations: A Case Study in Northern Taiwan

  • Chapter
  • First Online:
Advances in Remote Sensing for Infrastructure Monitoring

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

  • 867 Accesses

Abstract

Landslide, debris flow, and debris flood are the most common geological hazards triggered by intense rainfall in Taiwan. Taiwan is a very densely populated high relief island, and therefore the landslides sometimes affect our transportation and energy infrastructures and populated areas. This study investigates the regional landslide activity and potential slope movement using high-resolution time-series RADARSAT-2 InSAR images. We focussed on the 2015 typhoon, which affected Wulai and Xindian Districts in northern Taiwan. InSAR techniques, such as D-InSAR and SBAS, were applied to detect slope deformation caused by shallow and deep-seated landslides. This study conducted field investigations, and used high-resolution DTMs, and 3D photographic UAV surveying to determine the landslide hotspots and geomorphologic changes. The validation results show the InSAR maps accurately identify slow-moving landslides with a surface displacement of about 2 cm/year and debris flows on the bed of a gully. The InSAR displacement map helps to recognize the possible deep-seated landslides not previously known using a DTM. The field validation of the InSAR results from the proposed approach confirmed that the detection of different types of slope-land hazards: shallow landslides, deep-seated landslides, debris flows, and sediment deposition. Furthermore, the result will contribute to updating the national-wide environmental geologic map and provide competent authority to make decisions reducing the geohazard risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonì, R., M. Bordoni, C. Meisina, A. Colombo, and L. Lanteri. 2017. Intergration of multi-sensor a DinSAR data for landslide inventory update. In Advancing Culture of Living with Landslides. WLF 2017, ed. M. Mikos, B. Tiwari, Y. Yin, and K. Sassa, 133–139. Cham: Springer.

    Google Scholar 

  • Bovenga, F., G. Pasquariello, R. Pellicani, A. Refice, and G. Spilotro. 2017. Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: The large landslide of Carlantino (Italy). Catena 151: 49–62.

    Article  Google Scholar 

  • Bozzano, F., P. Caporossi, C. Esposito, S. Martino, P. Mazzanti, S. Moretto, G.S. Mugnozza, and A.M. Rizzo. 2017. Mechanism of the Montescaglioso Landslide (Southern Italy) inferred by geological survey and remote sensing. In Advancing Culture of Living with Landslides. WLF 2017, ed. M. Mikos, B. Tiwari, Y. Yin, and K. Sassa, 97–106. Cham: Springer.

    Google Scholar 

  • Calvello, M., D. Peduto, and L. Arena. 2017. Combined use of statistical and DInSAR data analyses to define the state of activity of slow-moving landslides. Landslides 14 (2): 473–489.

    Article  Google Scholar 

  • Center for Research on the Epidemiology of Disasters. 2015. The human cost of weather-related disasters 1995–2015. In The United Nations Office for Disaster Risk Reduction, 24.

    Google Scholar 

  • Ciampalini, A., F. Raspini, S. Bianchini, W. Frodella, F. Bardi, D. Lagomarsino, A. Traglia, et al. 2015. Remote sensing as tool for development of landslide databases: The case of the Messina Province (Italy) Geodatabase. Geomorphology 249: 103–118.

    Article  Google Scholar 

  • Cruden, D.M., and D.J. Varnes. 1996. Landslide Types and Processes, Transportation Research Board, U.S. National Academy of Sciences, Special Report, 247: 36–75.

    Google Scholar 

  • García-Davalillo, J., G. Herrera, D. Notti, T. Strozzi, and I. Á lvarez-Fernández. 2014. DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: The Tena Valley Case Study. Landslides 14 (2): 225–246.

    Article  Google Scholar 

  • Gariano, S.L., and F. Guzzetti. 2016. Landslides in a changing climate. Earth-Science Reviews 162: 227–252.

    Article  Google Scholar 

  • Herrera, G., F. Gutiérrez, J.C. García-Davalillo, J. Guerrero, D. Notti, J.P. Galve, J.A. Fernández-Merodo, and G. Cooksley. 2013. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley Case Study (Central Spanish Pyrenees). Remote Sensing of Environment 128: 31–43.

    Article  Google Scholar 

  • Kokalj, Ž., and R. Hesse. 2017. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice, 88. Ljubljana: Založba ZRC.

    Book  Google Scholar 

  • Lee, C.F., C.M. Huang, T.C. Tsao, L.W. Wei, W.K. Huang, C.T. Cheng, and C.C. Chi. 2016. Combining rainfall parameter and landslide susceptibility to forecast shallow landslide in Taiwan. Geotechnical Engineering Journal of the SEAGS & AGSSEA 47 (2): 72–82.

    Google Scholar 

  • Lee, C.F., W.K. Huang, C.M. Huang, and C.C. Chi. 2017. Deep-seated landslide mapping and geomorphic characteristic using high resolution DTM in Northern Taiwan. In Advancing Culture of Living with Landslides, ed. M. Mikos, B. Tiwari, Y. Yin, and K. Sassa, vol. 2, 767–777. Cham: Springer.

    Google Scholar 

  • Lo, C.M., C.F. Lee, and J. Keck. 2017. Application of sky view factor technique to the interpretation and reactivation assessment of landslide activity. Environmental Earth Sciences 76: 375.

    Article  Google Scholar 

  • Martire, D.D., S. Tessitore, D. Brancato, M.G. Ciminelli, S. Costabile, M. Costantini, G.V. Graziano, F. Minati, M. Ramondini, and D. Calcaterra. 2016. Landslide detection integrated system (LaDIS) based on In-situ and satellite SAR interferometry measurements. Catena 137: 406–421.

    Article  Google Scholar 

  • Mateos, R.M., J.M. Azañón, F.J. Roldán, D. Notti, V. Pérez-Peña, J.P. Galve, J.L. Pérez-García, et al. 2017. The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides 14 (2): 743–754.

    Article  Google Scholar 

  • Oliveira, S.C., J.L. Zêzere, J. Catalão, and G. Nico. 2014. The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides 12 (4): 703–719.

    Article  Google Scholar 

  • Raspini, F., A. Ciampalini, S.D. Conte, L. Lombardi, Massimiliano Nocentini, Giovanni Gigli, Alessandro Ferretti, and Nicola Casagli. 2017. Mapping rapid-moving landslide with satellite SAR images: The case of Montescaglioso (South Italy). In Advancing Culture of Living with Landslides. WLF 2017, ed. M. Mikos, B. Tiwari, Y. Yin, and K. Sassa, 171–177. Cham: Springer.

    Google Scholar 

  • Righini, G., V. Pancioli, and N. Casagli. 2012. Updating landslide inventory maps using persistent scatterer interferometry (PSI). International Journal of Remote Sensing 33 (7): 2068–2096.

    Article  Google Scholar 

  • Rosi, A., V. Tofani, L. Tanteri, C.T. Stefanelli, A. Agostini, F. Catani, and N. Casagli. 2017. The New Landslide Inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 15: 5–19.

    Article  Google Scholar 

  • Schlögel, R., B. Thiebes, M. Mulas, G. Cuozzo, C. Notarnicola, S. Schneiderbauer, M. Crespi, A. Mazzoni, V. Mair, and A. Corsini. 2017. Multi-temporal X-Band radar interferometry using corner reflectors: application and validation at the Corvara Landslide (Dolomites, Italy). Remote Sensors 9: 739.

    Article  Google Scholar 

  • Singhroy, V., F. Charbonneau, C. Froese, and R. Couture. 2012. Guidelines for InSAR monitoring of landslides in Canada. In Landslides and Engineered Slopes, ed. Eberhardt et al., 1281–1287. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Singhroy, V., and F.J. Charbonneau. 2014. RADARSAT: science and applications. Physics in Canada 70 (4): 212–217.

    Google Scholar 

  • Singhroy, V., and K. Molch. 2004. Characterizing and monitoring rockslides from SAR techniques. Advances in Space Research 33 (3): 290–295.

    Article  Google Scholar 

  • The International Geotechnical Society. 1993. Multilingual Landslide Glossary, 17–18. Richmond, BC, Canada: Bitech Publishers Ltd.

    Google Scholar 

  • The World Bank. 2005. Natural Disaster Hotspots a Global Risk Analysis, 3–14. Washington, DC: World Bank.

    Google Scholar 

  • Vecchiotti, F., D. Peduto, and T. Strozzi. 2017. Multi-sensor a priori PSI visibility map for nationwide landslide detection in Austria. In Advancing Culture of Living with Landslides. WLF 2017, ed. M. Mikos, B. Tiwari, Y. Yin, and K. Sassa, 45–52. Cham: Springer.

    Google Scholar 

  • Ventisette, C.D., G. Righini, S. Moretti, and N. Casagli. 2014. Multitemporal landslides inventory map updating using spaceborneSAR analysis. International Journal of Applied Earth Observation and Geoinformation 30: 238–246.

    Article  Google Scholar 

  • Zakšek, K., K. Oštir, and Ž. Kokalj. 2011. Sky-view factor as a relief visualization technique. Remote Sensors 3: 398–415.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Central Geological Survey, MOEA (Taiwan) for providing us access to the high-resolution shaded reliefs. The authors thank Canada Centre for Remote Sensing for conducting the InSAR analysis and Sinotech Engineering Consultants, Inc. for financial support on this study. We also acknowledge support from the Ministry of Science and Technology, Taiwan (Grant No. MOST 106-2420-H-004-015- 406MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Fang Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, CF., Singhroy, V., Lin, SY., Huang, WK., Li, J. (2021). Landslide Activity Assessment of a Subtropical Area by Integrating InSAR, Landslide Inventory, Airborne LiDAR, and UAV Investigations: A Case Study in Northern Taiwan. In: Singhroy, V. (eds) Advances in Remote Sensing for Infrastructure Monitoring. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-030-59109-0_5

Download citation

Publish with us

Policies and ethics