Advertisement

Chinese-Russian Shared Task on Multi-domain Translation

Conference paper
  • 182 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1292)

Abstract

We present the results the first shared task on Machine Translation (MT) from Chinese into Russian, which is the only MT competition for this pair of languages to date. The task for participants was to train a general-purpose MT system which performs reasonably well on very diverse text domains and styles without additional fine-tuning. 11 teams participated in the competition, some of the submitted models showed reasonably good performance topping at 19.7 BLEU.

Keywords

Machine Translation Shared task Domain adaptation 

Notes

Acknowledgements

We are thankful to Kirill Semenov from NRU Higher School of Economics, who generously provided us with test corpus for the competition. We also thank the competition platform provider MLBootCamp (https://mlbootcamp.ru/en/main/) (part of Mail.Ru Group) and Dmitry Sannikov personally for the competition technical support and organization.

References

  1. 1.
    Alinejad, A., Siahbani, M., Sarkar, A.: Prediction improves simultaneous neural machine translation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 3022–3027. Association for Computational Linguistics, October–November 2018.  https://doi.org/10.18653/v1/D18-1337. https://www.aclweb.org/anthology/D18-1337
  2. 2.
    Artetxe, M., Labaka, G., Agirre, E.: An effective approach to unsupervised machine translation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 194–203. Association for Computational Linguistics, July 2019.  https://doi.org/10.18653/v1/P19-1019. https://www.aclweb.org/anthology/P19-1019
  3. 3.
    Chu, C., Wang, R.: A survey of domain adaptation for neural machine translation. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA, pp. 1304–1319. Association for Computational Linguistics, August 2018. https://www.aclweb.org/anthology/C18-1111
  4. 4.
    Grishina, E.: Spoken Russian in the Russian national corpus (RNC). In: LREC, pp. 121–124. Citeseer (2006)Google Scholar
  5. 5.
    Hassan Awadalla, H., et al.: Achieving human parity on automatic Chinese to English news translation, March 2018. https://www.microsoft.com/en-us/research/publication/achieving-human-parity-on-automatic-chinese-to-english-news-translation/. arXiv:1803.05567
  6. 6.
    Junczys-Dowmunt, M., et al.: Marian: fast neural machine translation in C++. In: Proceedings of ACL 2018, System Demonstrations, Melbourne, Australia, pp. 116–121. Association for Computational Linguistics, July 2018. http://www.aclweb.org/anthology/P18-4020
  7. 7.
    Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: open-source toolkit for neural machine translation. In: Proceedings of ACL 2017, System Demonstrations, Vancouver, Canada, pp. 67–72. Association for Computational Linguistics, July 2017. https://www.aclweb.org/anthology/P17-4012
  8. 8.
    Li, X., Michel, P., et al.: Findings of the first shared task on machine translation robustness. In: Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), Florence, Italy, pp. 91–102. Association for Computational Linguistics, August 2019. http://www.aclweb.org/anthology/W19-5303
  9. 9.
    Lison, P., Tiedemann, J.: Opensubtitles 2016: extracting large parallel corpora from movie and TV subtitles (2016)Google Scholar
  10. 10.
    Michel, P., Neubig, G.: MTNT: a testbed for machine translation of noisy text. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 543–553. Association for Computational Linguistics, October–November 2018.  https://doi.org/10.18653/v1/D18-1050. https://www.aclweb.org/anthology/D18-1050
  11. 11.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)Google Scholar
  12. 12.
    Sajjad, H., Durrani, N., Dalvi, F., Belinkov, Y., Vogel, S.: Neural machine translation training in a multi-domain scenario. CoRR abs/1708.08712 (2017). http://arxiv.org/abs/1708.08712
  13. 13.
    Schwenk, H., Wenzek, G., Edunov, S., Grave, E., Joulin, A.: CCMatrix: mining billions of high-quality parallel sentences on the web. arXiv preprint arXiv:1911.04944 (2019)
  14. 14.
    Sennrich, R., Haddow, B., Birch, A.: Controlling politeness in neural machine translation via side constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, pp. 35–40. Association for Computational Linguistics, June 2016.  https://doi.org/10.18653/v1/N16-1005. https://www.aclweb.org/anthology/N16-1005
  15. 15.
    Sennrich, R., Zhang, B.: Revisiting low-resource neural machine translation: a case study. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 211–221. Association for Computational Linguistics, July 2019.  https://doi.org/10.18653/v1/P19-1021. https://www.aclweb.org/anthology/P19-1021
  16. 16.
    Tiedemann, J.: Parallel data, tools and interfaces in OPUS. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC 2012), pp. 2214–2218 (2012)Google Scholar
  17. 17.
    Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
  18. 18.
    Zeng, J., et al.: Multi-domain neural machine translation with word-level domain context discrimination. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 447–457. Association for Computational Linguistics, October–November 2018.  https://doi.org/10.18653/v1/D18-1041. https://www.aclweb.org/anthology/D18-1041
  19. 19.
    Ziemski, M., Junczys-Dowmunt, M., Pouliquen, B.: The united nations parallel corpus v1.0. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 3530–3534 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Huawei Noah’s Ark LabMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations