Skip to main content

Chinese-Russian Shared Task on Multi-domain Translation

  • Conference paper
  • First Online:
Artificial Intelligence and Natural Language (AINL 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1292))

Included in the following conference series:

  • 416 Accesses

Abstract

We present the results the first shared task on Machine Translation (MT) from Chinese into Russian, which is the only MT competition for this pair of languages to date. The task for participants was to train a general-purpose MT system which performs reasonably well on very diverse text domains and styles without additional fine-tuning. 11 teams participated in the competition, some of the submitted models showed reasonably good performance topping at 19.7 BLEU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://statmt.org/wmt20/chat-task.html.

  2. 2.

    http://www.ruscorpora.ru.

  3. 3.

    http://opus.nlpl.eu/UNPC-v1.0.php.

  4. 4.

    https://github.com/facebookresearch/LASER/tree/master/tasks/CCMatrix.

  5. 5.

    http://opus.nlpl.eu/OpenSubtitles-v2018.php.

  6. 6.

    https://www.project-syndicate.org/.

  7. 7.

    http://www.casmacat.eu/corpus/news-commentary.html.

  8. 8.

    https://mlbootcamp.ru/ru/round/26/rating/?results_filter=final.

  9. 9.

    https://opennmt.net/OpenNMT-py/.

  10. 10.

    https://github.com/tensorflow/tensor2tensor.

  11. 11.

    https://marian-nmt.github.io/.

  12. 12.

    https://tatianashavrina.github.io/taiga_site/.

  13. 13.

    The code and the model itself are available here: https://github.com/facebookresearch/LASER.

References

  1. Alinejad, A., Siahbani, M., Sarkar, A.: Prediction improves simultaneous neural machine translation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 3022–3027. Association for Computational Linguistics, October–November 2018. https://doi.org/10.18653/v1/D18-1337. https://www.aclweb.org/anthology/D18-1337

  2. Artetxe, M., Labaka, G., Agirre, E.: An effective approach to unsupervised machine translation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 194–203. Association for Computational Linguistics, July 2019. https://doi.org/10.18653/v1/P19-1019. https://www.aclweb.org/anthology/P19-1019

  3. Chu, C., Wang, R.: A survey of domain adaptation for neural machine translation. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA, pp. 1304–1319. Association for Computational Linguistics, August 2018. https://www.aclweb.org/anthology/C18-1111

  4. Grishina, E.: Spoken Russian in the Russian national corpus (RNC). In: LREC, pp. 121–124. Citeseer (2006)

    Google Scholar 

  5. Hassan Awadalla, H., et al.: Achieving human parity on automatic Chinese to English news translation, March 2018. https://www.microsoft.com/en-us/research/publication/achieving-human-parity-on-automatic-chinese-to-english-news-translation/. arXiv:1803.05567

  6. Junczys-Dowmunt, M., et al.: Marian: fast neural machine translation in C++. In: Proceedings of ACL 2018, System Demonstrations, Melbourne, Australia, pp. 116–121. Association for Computational Linguistics, July 2018. http://www.aclweb.org/anthology/P18-4020

  7. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: open-source toolkit for neural machine translation. In: Proceedings of ACL 2017, System Demonstrations, Vancouver, Canada, pp. 67–72. Association for Computational Linguistics, July 2017. https://www.aclweb.org/anthology/P17-4012

  8. Li, X., Michel, P., et al.: Findings of the first shared task on machine translation robustness. In: Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), Florence, Italy, pp. 91–102. Association for Computational Linguistics, August 2019. http://www.aclweb.org/anthology/W19-5303

  9. Lison, P., Tiedemann, J.: Opensubtitles 2016: extracting large parallel corpora from movie and TV subtitles (2016)

    Google Scholar 

  10. Michel, P., Neubig, G.: MTNT: a testbed for machine translation of noisy text. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 543–553. Association for Computational Linguistics, October–November 2018. https://doi.org/10.18653/v1/D18-1050. https://www.aclweb.org/anthology/D18-1050

  11. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)

    Google Scholar 

  12. Sajjad, H., Durrani, N., Dalvi, F., Belinkov, Y., Vogel, S.: Neural machine translation training in a multi-domain scenario. CoRR abs/1708.08712 (2017). http://arxiv.org/abs/1708.08712

  13. Schwenk, H., Wenzek, G., Edunov, S., Grave, E., Joulin, A.: CCMatrix: mining billions of high-quality parallel sentences on the web. arXiv preprint arXiv:1911.04944 (2019)

  14. Sennrich, R., Haddow, B., Birch, A.: Controlling politeness in neural machine translation via side constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, pp. 35–40. Association for Computational Linguistics, June 2016. https://doi.org/10.18653/v1/N16-1005. https://www.aclweb.org/anthology/N16-1005

  15. Sennrich, R., Zhang, B.: Revisiting low-resource neural machine translation: a case study. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 211–221. Association for Computational Linguistics, July 2019. https://doi.org/10.18653/v1/P19-1021. https://www.aclweb.org/anthology/P19-1021

  16. Tiedemann, J.: Parallel data, tools and interfaces in OPUS. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC 2012), pp. 2214–2218 (2012)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

  18. Zeng, J., et al.: Multi-domain neural machine translation with word-level domain context discrimination. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 447–457. Association for Computational Linguistics, October–November 2018. https://doi.org/10.18653/v1/D18-1041. https://www.aclweb.org/anthology/D18-1041

  19. Ziemski, M., Junczys-Dowmunt, M., Pouliquen, B.: The united nations parallel corpus v1.0. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 3530–3534 (2016)

    Google Scholar 

Download references

Acknowledgements

We are thankful to Kirill Semenov from NRU Higher School of Economics, who generously provided us with test corpus for the competition. We also thank the competition platform provider MLBootCamp (https://mlbootcamp.ru/en/main/) (part of Mail.Ru Group) and Dmitry Sannikov personally for the competition technical support and organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Malykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malykh, V., Logacheva, V. (2020). Chinese-Russian Shared Task on Multi-domain Translation. In: Filchenkov, A., Kauttonen, J., Pivovarova, L. (eds) Artificial Intelligence and Natural Language. AINL 2020. Communications in Computer and Information Science, vol 1292. Springer, Cham. https://doi.org/10.1007/978-3-030-59082-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59082-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59081-9

  • Online ISBN: 978-3-030-59082-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics