Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 159 Accesses

Abstract

Cross-correlation [1] measures the frequency at which one particular neuron or electrode fires (“target”) as a function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550

    Article  Google Scholar 

  2. Eytan D, Minerbi A, Ziv N, Marom S (2004) Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons. J Neurophysiol 92:1817–1824

    Article  Google Scholar 

  3. Wagenaar DA, Pine J, Potter SM (2006) An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci 7:11

    Article  Google Scholar 

  4. Pastore VP, Massobrio P, Godjoski A, Martinoia S (2018) Excitatory-inhibitory links and network topology in large scale neuronal assemblies from multi-electrode recordings. PLoS Comput Biol 14(8):e1006381. https://doi.org/10.1371/journal.pcbi.100638

    Article  Google Scholar 

  5. Brillinger DR, Bryant HL, Segundo JP (1976) Identification of synaptic interactions. Biol Cybern 22:213–228. https://doi.org/10.1007/bf00365087

    Article  MATH  Google Scholar 

  6. Eichler M, Dahlhaus R, Sandkuhler J (2003) Partial correlation analysis for the identification of synaptic connections. Biol Cybern 89:289–302

    Article  Google Scholar 

  7. Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn. Mc Graw Hill, New York

    Google Scholar 

  8. Dahlhaus R, Eichler M, Sandkuhler J (1997) Identification of synaptic connections in neural ensembles by graphical models. J Neurosci Methods 77:93–107

    Article  Google Scholar 

  9. Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461–464

    Article  Google Scholar 

  10. Bennett K, Robertson J (2011) MATLAB—A ubiquitous tool for the practical engineer. In: Ionescu CM (ed)

    Google Scholar 

  11. Overbey LA, Todd MD (2009) Dynamic system change detection using a modification of the transfer entropy. J Sound Vib 322:438–453. https://doi.org/10.1016/j.jsv.2008.11.025

    Article  Google Scholar 

  12. Berdondini L et al (2006) A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sens Actuat B Chem 114:530–541

    Article  Google Scholar 

  13. Garofalo M, Nieus T, Massobrio P, Martinoia S (2009) Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS ONE 4:e6482. https://doi.org/10.1371/journal.pone.0006482

    Article  Google Scholar 

  14. Taketani M, Baudry M (2006) Advances in network electrophysiology: using multi-electrode arrays. Springer, New York

    Google Scholar 

  15. Poli D, Pastore VP, Massobrio P (2015) Functional connectivity in in vitro neuronal assemblies. Front Neural Circ 9:57. https://doi.org/10.3389/fncir.2015.00057

    Article  Google Scholar 

  16. Nigam S et al (2016) Rich-club organization in effective connectivity among cortical neurons. J Neurosci 36:670–684. https://doi.org/10.1523/JNEUROSCI.2177-15.2016

    Article  Google Scholar 

  17. Grun S, Rotter S (2010) Series in computational neuroscience. Springer, p 444

    Google Scholar 

  18. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  19. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  Google Scholar 

  20. Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922

    Article  Google Scholar 

  21. Barabasi A-L, Bonabeau E (2003) Scale-free networks. Sci Am 50–59

    Google Scholar 

  22. Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2:e1049. https://doi.org/10.1371/journal.pone.0001049

    Article  Google Scholar 

  23. Bonifazi P et al (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424

    Article  Google Scholar 

  24. Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102

    Article  Google Scholar 

  25. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  Google Scholar 

  26. Downes JH et al (2012) Emergence of a small-world functional network in cultured neurons. PLoS Comput Biol 8:e1002522. https://doi.org/10.1371/journal.pcbi.1002522

    Article  Google Scholar 

  27. Schroeter MS, Charlesworth P, Kitzbichler MG, Paulsen O, Bullmore ET (2015) Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. J Neurosci 35:5459–5470. https://doi.org/10.1523/JNEUROSCI.4259-14.2015

    Article  Google Scholar 

  28. Berdondini L et al (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9:2644–2651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pastore, V.P. (2021). Materials and Methods. In: Estimating Functional Connectivity and Topology in Large-Scale Neuronal Assemblies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-59042-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59042-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59041-3

  • Online ISBN: 978-3-030-59042-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics