Skip to main content

A Deep Spatial-Temporal Network for Vehicle Trajectory Prediction

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12384))

Abstract

To plan travel routes reasonably and alleviate traffic congestion effectively, trajectory prediction of vehicles plays an important and necessary role in intelligent transportation. This paper presents a deep spatial-temporal network for long-term trajectory prediction of vehicles. Our network mainly includes the spatial layer, the temporal layer and local-global estimation layer. The spatial layer uses dilated convolution to build a long distance location convolution that functions as calculating the spatial features of trajectories. In the temporal layer, temporal prediction employs the Temporal Convolutional Network (TCN) for the first time to calculate deep spatial-temporal features in the process of prediction. The traditional linear method is replaced by special global-local estimation layer in order to improve accuracy of prediction. The NGSIM US-101 and GeoLife data sets are used for training and evaluation of experiments which contain 17,621 trajectories with a total distance of more than 1.2 million km. As results show, compared with other existing prediction network models, our network can produce almost the same short-term prediction results and has higher accuracy in long-term trajectory prediction.

This research was supported in part by National Key Research and Development Plan Key Special Projects under Grant No. 2018YFB2100303, Key Research and Development Plan Project of Shandong Province under Grant No. 2016GGX101032 and Program for Innovative Postdoctoral Talents in Shandong Province under Grant No. 40618030001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houenou, A., Bonnifait, P., Cherfaoui, V., et al.: Vehicle trajectory prediction based on motion model and maneuver recognition. In: International Conference on Intelligent Robots and Systems 2013, pp. 4363–4369. IEEE (2013)

    Google Scholar 

  2. Woo, H., Ji, Y., Kono, H., et al.: Lane-change detection based on vehicle-trajectory prediction. IEEE Robot. Autom. Lett. 2(2), 1109–1116 (2017)

    Article  Google Scholar 

  3. Hermes, C., Wohler, C., Schenk, K., et al.: Long-term vehicle motion prediction. In: Intelligent Vehicles Symposium 2009, pp. 652–657. IEEE (2009)

    Google Scholar 

  4. Wang, L., Chen, Z., Wu, J.: Vehicle trajectory prediction algorithm in vehicular network. Wireless Netw. 25(4), 2143–2156 (2018). https://doi.org/10.1007/s11276-018-1803-3

    Article  Google Scholar 

  5. De Leege, A., van Paassen, M., Mulder, M.: A machine learning approach to trajectory prediction. In: Guidance, Navigation, and Control Conference 2013, p. 4782. AIAA (2013)

    Google Scholar 

  6. Zheng, Y.: Trajectory data mining: an overview. Trans. Intell. Syst. Technol. 6(3), 1–41 (2015)

    Article  Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Cho, K., Van Merriënboer, B., Gulcehre, C., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv1406.1078 (2014)

  9. Jiang, H., Chang, L., Li, Q., et al.: Trajectory prediction of vehicles based on deep learning. In: International Conference on Intelligent Transportation Engineering 2019, pp. 190–195. IEEE (2019)

    Google Scholar 

  10. Kim, B., Kang, C.M., Kim, J., et al.: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In: Intelligent Transportation Systems 2017, pp. 399–404. IEEE (2017)

    Google Scholar 

  11. Dai, S., Li, L., Li, Z.: Modeling vehicle interactions via modified LSTM models for trajectory prediction. IEEE Access 7, 38287–38296 (2019)

    Article  Google Scholar 

  12. Park, S.H., Kim, B., Kang, C.M., et al.: Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In: Intelligent Vehicles Symposium 2018, pp. 1672–1678. IEEE (2018)

    Google Scholar 

  13. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: Computer Vision and Pattern Recognition Workshops 2018, pp. 1468–1476. IEEE (2018)

    Google Scholar 

  14. Deo, N., Trivedi, M.M.: Multi-modal trajectory prediction of surrounding vehicles with maneuver based lstms. In: Intelligent Vehicles Symposium 2018, pp. 1179–1184. IEEE (2018)

    Google Scholar 

  15. Jeong, D., Baek, M., Lee, S.S.: Long-term prediction of vehicle trajectory based on a deep neural network. In: Information and Communication Technology Convergence 2017, pp. 725–727. IEEE (2017)

    Google Scholar 

  16. Lea, C., Flynn, M.D., Vidal, R., et al.: Temporal convolutional networks for action segmentation and detection. In: Computer Vision and Pattern Recognition 2017, pp. 156–165. IEEE (2017)

    Google Scholar 

  17. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv1803.01271 (2018)

  18. Mnih, V., Heess, N., Graves, A.: Recurrent models of visual attention. In: Neural Information Processing Systems 2014, pp. 2204–2212. NIPS (2014)

    Google Scholar 

  19. Wang, D., Zhang, J., Cao, W., et al.: When will you arrive? estimating travel time based on deep neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence 2018, pp. 2500–2507. AAAI (2018)

    Google Scholar 

  20. Deo, N., Rangesh, A., Trivedi, M.M.: How would surround vehicles move? A unified framework for maneuver classification and motion prediction. IEEE Trans. Intell. Veh. 3(2), 129–140 (2018)

    Article  Google Scholar 

  21. Stöckl, C., Maass, W.: Classifying images with few spikes per Neuron. arXiv2002.00860 (2020)

  22. Bremer, J., Pang, Q., Yang, H.: Fast algorithms for the multi-dimensional Jacobi polynomial transform. Applied and Computational Harmonic Analysis, arXiv1901.07275v3 (2020)

  23. Yang, J., Purevjav, A.O., Li, S.: The marginal cost of traffic congestion and road pricing: evidence from a natural experiment in Beijing. Am. Econ. J. Econ. Policy 12(1), 418–453 (2020)

    Article  Google Scholar 

  24. Günther, S., Ruthotto, L., Schroder, J.B., et al.: Layer-parallel training of deep residual neural networks. SIAM J. Math. Data Sci. 2(1), 1–23 (2020)

    Article  MathSciNet  Google Scholar 

  25. Colyar, J., Halkias, J.: US Highway 101 dataset. federal highway administration. Technical report FHWA-HRT-07-030 (2007)

    Google Scholar 

  26. Zheng, Y., Xie, X., Ma, W.Y.: GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. 33(2), 32–39 (2010)

    Google Scholar 

  27. Huang, F., Zhang, J., Zhou, C., Wang, Y., Huang, J., Zhu, L.: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 17(1), 217–229 (2019). https://doi.org/10.1007/s10346-019-01274-9

    Article  Google Scholar 

  28. Hamaguchi, R., Fujita, A., Nemoto, K., et al.: Effective use of dilated convolutions for segmenting small object instances in remote sensing imagery. In: Winter Conference on Applications of Computer Vision 2018, pp. 1442–1450. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, Z., Li, J., Dong, C., Zhao, W. (2020). A Deep Spatial-Temporal Network for Vehicle Trajectory Prediction. In: Yu, D., Dressler, F., Yu, J. (eds) Wireless Algorithms, Systems, and Applications. WASA 2020. Lecture Notes in Computer Science(), vol 12384. Springer, Cham. https://doi.org/10.1007/978-3-030-59016-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59016-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59015-4

  • Online ISBN: 978-3-030-59016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics