Skip to main content

Post-Quantum Adaptor Signatures and Payment Channel Networks

  • Conference paper
  • First Online:
Computer Security – ESORICS 2020 (ESORICS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12309))

Included in the following conference series:

Abstract

Adaptor signatures, also known as scriptless scripts, have recently become an important tool in addressing the scalability and interoperability issues of blockchain applications such as cryptocurrencies. An adaptor signature extends a digital signature in a way that a complete signature reveals a secret based on a cryptographic condition. It brings about various advantages such as (i) low on-chain cost, (ii) improved fungibility of transactions, and (iii) advanced functionality beyond the limitation of the blockchain’s scripting language.

In this work, we introduce the first post-quantum adaptor signature, named \({\mathsf {LAS}}\). Our construction relies on the standard lattice assumptions, namely Module-SIS and Module-LWE. There are certain challenges specific to the lattice setting, arising mainly from the so-called knowledge gap in lattice-based proof systems, that makes the realization of an adaptor signature and its applications difficult. We show how to overcome these technical difficulties without introducing additional on-chain costs. Our evaluation demonstrates that \({\mathsf {LAS}}\) is essentially as efficient as an ordinary lattice-based signature in terms of both communication and computation. We further show how to achieve post-quantum atomic swaps and payment channel networks using \({\mathsf {LAS}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basis of lightning technology, available at: https://github.com/lightningnetwork/ lightning-rfc/blob/master/00-introduction.md

  2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC. pp. 99–108. ACM (1996)

    Google Scholar 

  3. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostakova, K., Maffei, M., Moreno-Sanchez, P., Riahi, S.: Generalized bitcoin-compatible channels. Cryptology ePrint Archive, Report 2020/476 (2020), https://eprint.iacr.org/2020/476

  4. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_9

    Chapter  Google Scholar 

  5. Buterin, V.: Understanding serenity, part i: Abstraction (2015), https://blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/, Accessed on 20 April 2020

  6. Damgård, I.: On \(\varSigma \)-protocols. Lecture Notes, University of Aarhus, Department for Computer Science (2002), https://www.cs.au.dk/~ivan/Sigma.pdf

  7. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21741-3_1

    Chapter  Google Scholar 

  8. Dryja, T.: Discreet log contracts, https://adiabat.github.io/dlc.pdf

  9. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-Dilithium: Digital signatures from module lattices. In: CHES. vol. 2018–1 (2018), https://eprint.iacr.org/2017/633.pdf

  10. Esgin, M.F.: Practice-Oriented Techniques in Lattice-Based Cryptography. Ph.D. thesis, Monash University (5 2020). https://doi.org/10.26180/5eb8f525b3562, https://bridges.monash.edu/articles/Practice-Oriented_Techniques_in_Lattice-Based_Cryptography/12279728

  11. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: New techniques to exploit fully-splitting rings. Cryptology ePrint Archive, Report 2020/518 (2020), https://eprint.iacr.org/2020/518

  12. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: new techniques for shorter and faster constructions and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_5

    Chapter  Google Scholar 

  13. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_4

    Chapter  MATH  Google Scholar 

  14. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: Efficient, scalable and post-quantum blockchain confidential transactions protocol. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. pp. 567–584. CCS ’19, ACM (2019). https://doi.org/10.1145/3319535.3354200, (Full version at https://eprint.iacr.org/2019/1287)

  15. Fournier, L.: One-time verifiably encrypted signatures a.k.a. adaptor signatures (2019), https://github.com/LLFourn/one-time-VES/blob/master/main.pdf

  16. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: off the chain transactions. IACR Cryptol. ePrint Arch. 2019, 360 (2019)

    Google Scholar 

  17. Hcash: Hcash features, https://h.cash/#section4, Accessed on 20 April 2020

  18. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Design Code Cryptogr. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  20. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  21. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous multi-hop locks for blockchain scalability and interoperability. In: 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, California, USA, February 24–27, 2019 (2019), https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/

  22. NIST: Post-quantum cryptography - call for proposals (2017), https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals, Accessed on 20 April 2020

  23. Nolan, T.: Alt chains and atomic transfers, https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949

  24. Poelstra, A.: Adaptor signatures and atomic swaps from scriptless scripts, https://github.com/ ElementsProject/scriptless-scripts/blob/master/md/atomic-swap.md

  25. Poelstra, A.: Scriptless scripts. Presentation Slides, https://lists.launchpad.net/mimblewimble/msg00086. html

  26. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  Google Scholar 

  27. Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments (2016), draft version 0.5.9.2, available at https://lightning.network/lightning-network-paper.pdf

  28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40 (2009)

    Article  MathSciNet  Google Scholar 

  29. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22

    Chapter  Google Scholar 

  30. Alberto Torres, W., Kuchta, V., Steinfeld, R., Sakzad, A., Liu, J.K., Cheng, J.: Lattice RingCT V2.0 with multiple input and multiple output wallets. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 156–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_9

    Chapter  MATH  Google Scholar 

  31. Zcash: Frequently asked questions, https://z.cash/support/faq/#quantum-computers, Accessed on 20 April 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed F. Esgin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esgin, M.F., Ersoy, O., Erkin, Z. (2020). Post-Quantum Adaptor Signatures and Payment Channel Networks. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds) Computer Security – ESORICS 2020. ESORICS 2020. Lecture Notes in Computer Science(), vol 12309. Springer, Cham. https://doi.org/10.1007/978-3-030-59013-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59013-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59012-3

  • Online ISBN: 978-3-030-59013-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics