Skip to main content

On the Effect of DCE MRI Slice Thickness and Noise on Estimated Pharmacokinetic Biomarkers – A Simulation Study

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2020)

Abstract

Simulation of a dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) multiple sclerosis brain dataset is described. The simulated images in the implemented version have \(1\times 1\times 1\,\mathrm {mm}^3\) voxel resolution and arbitrary temporal resolution. Addition of noise and simulation of thick-slice imaging is also possible. Contrast agent (Gd-DTPA) passage through tissues is modelled using the extended Tofts-Kety model. Image intensities are calculated using signal equations of the spoiled gradient echo sequence that is typically used for DCE imaging. We then use the simulated DCE images to study the impact of slice thickness and noise on the estimation of both semi- and fully-quantitative pharmacokinetic features. We show that high spatial resolution images allow significantly more accurate modelling than interpolated low resolution DCE images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://brainweb.bic.mni.mcgill.ca/tissue_mr_parameters.txt.

References

  1. Profile: DCE MRI quantification (2012). http://qibawiki.rsna.org/index.php/Profiles

  2. Banerji, A.: Modelling and simulation of dynamic contrast-enhanced MRI of abdominal tumours. Ph.D. thesis (2012)

    Google Scholar 

  3. Betrouni, N., Tartare, G.: ProstateAtlas SimDCE: a simulation tool for dynamic contrast enhanced imaging of prostate. IRBM 36(3), 166–169 (2015)

    Article  Google Scholar 

  4. Bosca, R.J., Jackson, E.F.: Creating an anthropomorphic digital MR phantom-an extensible tool for comparing and evaluating quantitative imaging algorithms. Phys. Med. Biol. 61(2), 974 (2016)

    Article  Google Scholar 

  5. Collins, D.L., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17, 463–468 (1998). https://doi.org/10.1109/42.712135

    Article  Google Scholar 

  6. Cuenod, C.A., Balvay, D.: Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn. interv. Imaging 94, 1187–1204 (2013). https://doi.org/10.1016/j.diii.2013.10.010

    Article  Google Scholar 

  7. Dikaios, N., Arridge, S., Hamy, V., Punwani, S., Atkinson, D.: Direct parametric reconstruction from undersampled (k, t)-space data in dynamic contrast enhanced MRI. Med. Image Anal. 18(7), 989–1001 (2014)

    Article  Google Scholar 

  8. Fabijańska, A.: A novel approach for quantification of time-intensity curves in a DCE-MRI image series with an application to prostate cancer. Comput. Biol. Med. 73, 119–130 (2016). https://doi.org/10.1016/j.compbiomed.2016.04.010

    Article  Google Scholar 

  9. Furman-Haran, E., Grobgeld, D., Kelcz, F., Degani, H.: Critical role of spatial resolution in dynamic contrast-enhanced breast MRI. J. Magn. Reson. Imaging (JMRI) 13, 862–867 (2001). https://doi.org/10.1002/jmri.1123

    Article  Google Scholar 

  10. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34, 910–914 (1995). https://doi.org/10.1002/mrm.1910340618

    Article  Google Scholar 

  11. Haq, N.F., Kozlowski, P., Jones, E.C., Chang, S.D., Goldenberg, S.L., Moradi, M.: A data-driven approach to prostate cancer detection from dynamic contrast enhanced MRI. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 41, 37–45 (2015). https://doi.org/10.1016/j.compmedimag.2014.06.017

    Article  Google Scholar 

  12. He, D., Xu, L., Qian, W., Clarke, J., Fan, X.: A simulation study comparing nine mathematical models of arterial input function for dynamic contrast enhanced MRI to the Parker model. Australas. Phys. Eng. Sci. Med. 41(2), 507–518 (2018). https://doi.org/10.1007/s13246-018-0632-0

    Article  Google Scholar 

  13. Jurek, J.: Super-resolution reconstruction of three dimensional magnetic resonance images using deep and transfer learning. Ph.D. thesis (2020)

    Google Scholar 

  14. Jurek, J., Kociński, M., Materka, A., Elgalal, M., Majos, A.: CNN-based superresolution reconstruction of 3D MR images using thick-slice scans. Biocybern. Biomed. Eng. 40(1), 111–125 (2020)

    Article  Google Scholar 

  15. Khalifa, F., et al.: Models and methods for analyzing DCE-MRI: a review. Med. Phys. 41, 124301 (2014). https://doi.org/10.1118/1.4898202

    Article  Google Scholar 

  16. Kwan, R.K., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18, 1085–1097 (1999). https://doi.org/10.1109/42.816072

    Article  Google Scholar 

  17. Kwan, R.K.-S., Evans, A.C., Pike, G.B.: An extensible MRI simulator for post-processing evaluation. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 135–140. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0046947

    Chapter  Google Scholar 

  18. van der Leij, C., Lavini, C., van de Sande, M.G.H., de Hair, M.J.H., Wijffels, C., Maas, M.: Reproducibility of DCE-MRI time-intensity curve-shape analysis in patients with knee arthritis: a comparison with qualitative and pharmacokinetic analyses. J. Magn. Reson. Imaging (JMRI) 42, 1497–1506 (2015). https://doi.org/10.1002/jmri.24933

    Article  Google Scholar 

  19. O’Connor, J., Tofts, P., Miles, K., Parkes, L., Thompson, G., Jackson, A.: Dynamic contrast-enhanced imaging techniques: CT and MRI. Br. J. Radiol. 84(special\(\_\)issue\(\_\)2), S112–S120 (2011)

    Google Scholar 

  20. Orton, M.R., et al.: Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys. Med. Biol. 53, 1225–1239 (2008). https://doi.org/10.1088/0031-9155/53/5/005

    Article  Google Scholar 

  21. Pannetier, N.A., Debacker, C.S., Mauconduit, F., Christen, T., Barbier, E.L.: A simulation tool for dynamic contrast enhanced MRI. PLoS ONE 8, e57636 (2013). https://doi.org/10.1371/journal.pone.0057636

    Article  Google Scholar 

  22. Parker, G.J.M., et al.: Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn. Reson. Med. 56, 993–1000 (2006). https://doi.org/10.1002/mrm.21066

    Article  Google Scholar 

  23. Reichenbach, J., Hackländer, T., Harth, T., Hofer, M., Rassek, M., Mödder, U.: 1H T1 and T2 measurements of the MR imaging contrast agents Gd-DTPA and Gd-DTPA BMA at 1.5T. Eur. Radiol. 7(2), 264–274 (1997). https://doi.org/10.1007/s003300050149

    Article  Google Scholar 

  24. Tofts, P.S.: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magn. Reson. Imaging (JMRI) 7, 91–101 (1997). https://doi.org/10.1002/jmri.1880070113

    Article  Google Scholar 

  25. Tofts, P.S., Kermode, A.G.: Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Mag. Reson. Med. 17(2), 357–367 (1991)

    Article  Google Scholar 

  26. Weinmann, H.J., Laniado, M., Mützel, W.: Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol. Chem. Phys. Med. NMR 16(2), 167–172 (1984)

    Google Scholar 

  27. Yankeelov, T., Gore, J.: Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr. Med. Imaging Rev. 3(2), 91–107 (2009). https://doi.org/10.2174/157340507780619179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Jurek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jurek, J., Reisæter, L., Kociński, M., Materka, A. (2020). On the Effect of DCE MRI Slice Thickness and Noise on Estimated Pharmacokinetic Biomarkers – A Simulation Study. In: Chmielewski, L.J., Kozera, R., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2020. Lecture Notes in Computer Science(), vol 12334. Springer, Cham. https://doi.org/10.1007/978-3-030-59006-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59006-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59005-5

  • Online ISBN: 978-3-030-59006-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics