Skip to main content

A Vision Based Hardware-Software Real-Time Control System for the Autonomous Landing of an UAV

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2020)

Abstract

In this paper we present a vision based hardware-software control system enabling the autonomous landing of a multirotor unmanned aerial vehicle (UAV). It allows for the detection of a marked landing pad in real-time for a 1280 \(\times \) 720 @ 60 fps video stream. In addition, a LiDAR sensor is used to measure the altitude above ground. A heterogeneous Zynq SoC device is used as the computing platform. The solution was tested on a number of sequences and the landing pad was detected with 96% accuracy. This research shows that a reprogrammable heterogeneous computing system is a good solution for UAVs because it enables real-time data stream processing with relatively low energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is the same code as used in the software model [9].

References

  1. Carrio, A., Sampedro Pérez, C., Rodríguez Ramos, A., Campoy, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 1–13 (2017)

    Google Scholar 

  2. Ciarach, P., Kowalczyk, M., Przewlocka, D., Kryjak, T.: Real-time FPGA implementation of connected component labelling for a 4K video stream. In: Hochberger, C., Nelson, B., Koch, A., Woods, R., Diniz, P. (eds.) ARC 2019. LNCS, vol. 11444, pp. 165–180. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17227-5_13

    Chapter  Google Scholar 

  3. Giakoumidis, N., Bak, J.U., Gómez, J.V., Llenga, A., Mavridis, N.: Pilot-scale development of a UAV-UGV hybrid with air-based UGV path planning. In: Proceedings of 10th International Conference on Frontiers of Information Technology (FIT 2012), pp. 204–208, December 2012

    Google Scholar 

  4. Huang, Y., Zhong, Y., Cheng, S., Ba, M.: Research on UAV’s autonomous target landing with image and GPS under complex environment. In: 2019 International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 97–102 (2019)

    Google Scholar 

  5. Jin, S., Zhang, J., Shen, L., Li, T.: On-board vision autonomous landing techniques for quadrotor: a survey. In: 35th Chinese Control Conference (CCC), pp. 10284–10289 (2016)

    Google Scholar 

  6. Lee, S., Shim, T., Kim, S., Park, J., Hong, K., Bang, H.: Vision-based autonomous landing of a multi-copter unmanned aerial vehicle using reinforcement learning. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 108–114 (2018)

    Google Scholar 

  7. Patruno, C., Nitti, M., Petitti, A., Stella, E., D’Orazio, T.: A vision-based approach for unmanned aerial vehicle landing. J. Intell. Robot. Syst. 95(2), 645–664 (2019)

    Article  Google Scholar 

  8. Qiu, R., Miao, X., Zhuang, S., Jiang, H., Chen, J.: Design and implementation of an autonomous landing control system of unmanned aerial vehicle for power line inspection. In: 2017 Chinese Automation Congress (CAC), pp. 7428–7431 (2017)

    Google Scholar 

  9. Software model of the proposed application. https://github.com/vision-agh/drone_landing_static. Accessed 07 July 2020

  10. Xu, C., Tang, Y., Liang, Z., Yin, H.: UAV autonomous landing algorithm based on machine vision. In: IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 824–829 (2018)

    Google Scholar 

Download references

Acknowledgement

The work was supported by the Dean grant for young researches (first, second and third author) and AGH project number 16.16.120.773. The authors would like to thank Mr. Jakub Kłosiński, who during his bachelor thesis started the research on landing spot detection and Mr. Miłosz Mach, who was the initial constructor of the used drone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Kryjak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blachut, K., Szolc, H., Wasala, M., Kryjak, T., Gorgon, M. (2020). A Vision Based Hardware-Software Real-Time Control System for the Autonomous Landing of an UAV. In: Chmielewski, L.J., Kozera, R., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2020. Lecture Notes in Computer Science(), vol 12334. Springer, Cham. https://doi.org/10.1007/978-3-030-59006-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59006-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59005-5

  • Online ISBN: 978-3-030-59006-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics