Skip to main content

Facial Age Estimation Using Compact Facial Features

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12334))

Included in the following conference series:

  • 510 Accesses

Abstract

Facial age estimation studies have shown that the type of features used for face representation significantly impact the accuracy of age estimates. This work proposes a novel method of representing the face with compact facial features derived from extracted raw image pixels and Local Binary Patterns (LBP) for age estimation. The compact facial features are realized by exploiting the statistical properties of extracted facial features while aggregating over a whole feature set. The resulting compact feature set is of reduced dimensionality compared to the non-compact features. It also proves to retain relevant facial features as it achieves better age prediction accuracy than the non-compact features. An age group ranking model is also proposed which further reduces facial features dimensionality while improving age estimation accuracy. Experiments on the publicly-available FG-NET and Lifespan datasets gave a Mean Absolute Error (MAE) of 1.76 years and 3.29 years respectively, which are the lowest MAE so far reported on both datasets, to the best of our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akinyemi, J.D., Onifade, O.F.W.: An ethnic-specific age group ranking approach to facial age estimation using raw pixel features. In: 2016 IEEE Symposium on Technologies for Homeland Security (HST), pp. 1–6. IEEE, Waltham (May 2016). https://doi.org/10.1109/THS.2016.7819737

  2. Akinyemi, J.D., Onifade, O.F.W.: A computational face alignment method for improved facial age estimation. In: 2019 15th International Conference on Electronics, Computer and Computation, ICECCO 2019. No. ICECCO, IEEE, Abuja (2019). https://doi.org/10.1109/ICECCO48375.2019.9043246

  3. Alnajar, F., Alvarez, J.: Expression-invariant age estimation. In: Valstar, M., French, A., Pridmore, T. (eds.) British Machine Vision Conference (BMVC), pp. 1–11. BMVA Press (2014). https://doi.org/10.5244/C.28.14

  4. Angulu, R., Tapamo, J.R., Adewumi, A.O.: Age estimation via face images: a survey. EURASIP J. Image Video Process. 2018(42), 1–35 (2018). https://doi.org/10.1186/S13640-018-0278-6

  5. Chen, C., Yang, W., Wang, Y., Shan, S., Ricanek, K.: Learning gabor features for facial age estimation. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds.) CCBR 2011. LNCS, vol. 7098, pp. 204–213. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25449-9_26

    Chapter  Google Scholar 

  6. Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., Kim, J.: Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recogn. 44(6), 1262–1281 (2011). https://doi.org/10.1016/j.patcog.2010.12.005

    Article  MATH  Google Scholar 

  7. Cootes, T.F., Rigoll, G., Granum, E., Crowley, J.L., Marcel, S., Lanitis, A.: FG-NET: Face and Gesture Recognition Working group (2002). http://www-prima.inrialpes.fr/FGnet/

  8. Dornaika, F., Arganda-Carreras, I., Belver, C.: Age estimation in facial images through transfer learning. Mach. Vis. Appl. 30(1), 177–187 (2019). https://doi.org/10.1007/s00138-018-0976-1

    Article  Google Scholar 

  9. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014). https://doi.org/10.1109/TIFS.2014.2359646

    Article  Google Scholar 

  10. El Dib, M.Y., Onsi, H.M.: Human age estimation framework using different facial parts. Egypt. Inform. J. 12(1), 53–59 (2011). https://doi.org/10.1016/j.eij.2011.02.002

    Article  Google Scholar 

  11. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010). https://doi.org/10.1109/TPAMI.2010.36

    Article  Google Scholar 

  12. Guo, G., Mu, G., Fu, Y., Dyer, C.R., Huang, T.S.: A study on automatic age estimation using a large database. In: 2009 IEEE 12th International Conference on Computer Vision, vol. 12, pp. 1986–1991 (2009). https://doi.org/10.1109/ICCV.2009.5459438, http://ieeexplore.ieee.org/document/5459438/

  13. Guo, G., Wang, X.: A study on human age estimation under facial expression changes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2547–2553 (2012). https://doi.org/10.1109/CVPR.2012.6247972

  14. Han, H., Jain, A.K.: Age, gender and race estimation from unconstrained face images. Technical report, Michigan State University, East Lansing, Michigan (2014). http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/HanJain_UnconstrainedAgeGenderRaceEstimation_MSUTechReport2014.pdf

  15. Han, H., Otto, C., Jain, A.K.: Age estimation from face images: human vs. machine performance. In: 2013 International Conference on Biometrics (ICB), pp. 1–8 (2013). https://doi.org/10.1109/ICB.2013.6613022, http://ieeexplore.ieee.org/document/6613022/

  16. Lanitis, A.: On the significance of different facial parts for automatic age estimation. In: International Conference on Digital Signal Processing, DSP, vol. 2, no. 14, pp. 1027–1030 (2002). https://doi.org/10.1109/ICDSP.2002.1028265

  17. Lemperle, G., Holmes, R.E., Cohen, S.R., Lemperle, S.M.: A classification of facial wrinkles. Plast. Reconstr. Surg. 108(6), 1735–1750 (2001). https://doi.org/10.1097/00006534-200111000-00048

    Article  Google Scholar 

  18. Li, W., Lu, J., Feng, J., Xu, C., Zhou, J., Tian, Q.: BridgeNet: a continuity-aware probabilistic network for age estimation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1145–1154 (2019). http://arxiv.org/abs/1904.03358

  19. Li, Z., Gong, D., Li, X., Tao, D.: Aging face recognition: a hierarchical learning model based on local patterns selection. IEEE Trans. Image Process. 25(5), 2146–2154 (2016). https://doi.org/10.1109/TIP.2016.2535284

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, H., Lu, J., Feng, J., Zhou, J.: Ordinal deep feature learning for facial age estimation. In: Proceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017–1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Biometrics in the Wild, Bwild 2017, Heterogeneous, pp. 157–164 (2017). https://doi.org/10.1109/FG.2017.28, http://ieeexplore.ieee.org/document/7961736/

  21. Liu, K.H., Yan, S., Kuo, C.C.J.: Age estimation via grouping and decision fusion. IEEE Trans. Inf. Forensics Secur. 10(11), 2408–2423 (2015). https://doi.org/10.1109/TIFS.2015.2462732

    Article  Google Scholar 

  22. Luu, K., Ricanek, K., Bui, T.D., Suen, C.Y.: Age estimation using active appearance models and support vector machine regression. In: 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–5 (2009). https://doi.org/10.1109/BTAS.2009.5339053

  23. Minear, M., Park, D.C.: A lifespan database of adult facial stimuli. Behav. Res. Methods. Instrum. Comput. 36(4), 630–633 (2004). https://doi.org/10.3758/BF03206543

    Article  Google Scholar 

  24. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  25. Pan, H., Han, H., Shan, S., Chen, X.: Mean-variance loss for deep age estimation from a face. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 5285–5294 (2018). https://doi.org/10.1109/CVPR.2018.00554

  26. Xia, M., Zhang, X., Liu, W., Weng, L., Xu, Y.: Multi-stage feature constraints learning for age estimation. IEEE Trans. Inf. Forensics Secur. 15(c), 2417–2428 (2020). https://doi.org/10.1109/TIFS.2020.2969552

    Article  Google Scholar 

  27. Yang, H.F., Lin, B.Y., Chang, K.Y., Chen, C.S.: Automatic age estimation from face images via deep ranking. In: British Machine Vision Conference (BMVC), no. 3, pp. 1–11 (2015). https://doi.org/10.5244/C.29.55

  28. Zhang, C., Guo, G.: Age estimation with expression changes using multiple aging subspaces. In: IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6. Arlington (2013). https://doi.org/10.1109/BTAS.2013.6712720

  29. Zhang, Y., Yeung, D.Y.: Multi-task warped Gaussian process for personalized age estimation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2622–2629 (2010). https://doi.org/10.1109/CVPR.2010.5539975

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Damilola Akinyemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akinyemi, J.D., Onifade, O.F.W. (2020). Facial Age Estimation Using Compact Facial Features. In: Chmielewski, L.J., Kozera, R., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2020. Lecture Notes in Computer Science(), vol 12334. Springer, Cham. https://doi.org/10.1007/978-3-030-59006-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59006-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59005-5

  • Online ISBN: 978-3-030-59006-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics