Skip to main content

Discovering Relational Intelligence in Online Social Networks

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12391)


Information networks are pivotal to the operational utility of key industries like medical, finance, governments, etc. However, applications in this area are not adequate in representing relationships between nodes [34]. Trending graph learning methodologies [9, 16] like Graph Convolutional Networks (GCNs) [6] lack both representational power and accuracy to perform abstract computational tasks like prediction, classification, recommendation, etc. on real-time social networks. Furthermore, most such approaches known to date rely on learning temporal adjacency matrices to describe shallow attributes [9, 16] like word co-occurance PMI [3] changes [6] and are unable to capture complex evolving entity relationships in real life for applications like event prediction, link prediction, topic tracking, etc. [34]. Importantly, such models ignore knowledge information geometry [1, 24, 32] completely, and sacrifices fidelity to speed of convergence. To address these challenges, a novel Relational Flux Turbulence (RFT) model was developed in this study - to identify relational turbulence in Online Social Networks (OSNs). Very good correlations between relational turbulence and sentiments exchanged within social transactions show promise in achieving these objectives.


  • Relational turbulence
  • Social recognition
  • Deep learning

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Amari, S.I., Nagaoka, H.: Methods of information geometry, vol. 191. American Mathematical Society (2007)

    Google Scholar 

  2. Backstrom, L., Leskovec, J.: Link prediction in social networks using computationally efficient topological features. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third International Conference on Social Computing (SocialCom), pp. 73–80. IEEE (2011)

    Google Scholar 

  3. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990)

    Google Scholar 

  4. De Myttenaere, A., Golden, B., Le Grand, B., Rossi, F.: Mean absolute percentage error for regression models. Neurocomputing 192, 38–48 (2016)

    CrossRef  Google Scholar 

  5. Deng, L., Yu, D., et al.: Deep learning: methods and applications. Found. Trends® Sig. Process. 7(3–4), 197–387 (2014)

    Google Scholar 

  6. Deng, S., Rangwala, H., Ning, Y.: Learning dynamic context graphs for predicting social events. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1007–1016 (2019)

    Google Scholar 

  7. Espeholt, L., et al.: IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561 (2018)

  8. Ezzat, A., Wu, M., Li, X., Kwoh, C.-K.: Computational prediction of drug-target interactions via ensemble learning. In: Vanhaelen, Q. (ed.) Computational Methods for Drug Repurposing. MMB, vol. 1903, pp. 239–254. Springer, New York (2019).

    CrossRef  Google Scholar 

  9. Feng, K., Cong, G., Jensen, C.S., Guo, T.: Finding attribute-aware similar regions for data analysis. Proc. VLDB Endow. 12(11), 1414–1426 (2019)

    CrossRef  Google Scholar 

  10. Gan, Y., et al.: A comprehensive evaluation of various sensitivity analysis methods: a case study with a hydrological model. Environ. Model. Softw. 51, 269–285 (2014)

    CrossRef  Google Scholar 

  11. Gao, F., Musial, K., Cooper, C., Tsoka, S.: Link prediction methods and their accuracy for different social networks and network metrics. Sci. Program. 2015, 1 (2015)

    Google Scholar 

  12. Han, Z., Liu, Z., Han, J., Vong, C.M., Bu, S., Chen, C.L.P.: Mesh convolutional restricted Boltzmann machines for unsupervised learning of features with structure preservation on 3-D meshes. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2268–2281 (2017)

    CrossRef  MathSciNet  Google Scholar 

  13. Haunani Solomon, D., Theiss, J.: A longitudinal test of the relational turbulence model of romantic relationship development. Pers. Relationsh. 15, 339–357 (2008).

  14. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016).

    CrossRef  Google Scholar 

  15. Huang, G.B., Chen, Y.Q., Babri, H.A.: Classification ability of single hidden layer feedforward neural networks. IEEE Trans. Neural Netw. 11(3), 799–801 (2000)

    CrossRef  Google Scholar 

  16. Huang, X., Song, Q., Li, Y., Hu, X.: Graph recurrent networks with attributed random walks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 732–740 (2019)

    Google Scholar 

  17. Hutchinson, B., Deng, L., Yu, D.: Tensor deep stacking networks. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1944–1957 (2013)

    CrossRef  Google Scholar 

  18. Keshmiri, S., Sumioka, H., Nakanishi, J., Ishiguro, H.: Emotional state estimation using a modified gradient-based neural architecture with weighted estimates. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4371–4378. IEEE (2017)

    Google Scholar 

  19. Knobloch, L.K., Theiss, J.A.: Relational turbulence theory applied to the transition from deployment to reintegration. J. Family Theory Rev. 10(3), 535–549 (2018)

    CrossRef  Google Scholar 

  20. Lan, T., Sigal, L., Mori, G.: Social roles in hierarchical models for human activity recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1354–1361. IEEE (2012)

    Google Scholar 

  21. Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)

  22. Li, Y., Zhang, Z.-L., Bao, J.: Mutual or unrequited love: identifying stable clusters in social networks with uni- and bi-directional links. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS, vol. 7323, pp. 113–125. Springer, Heidelberg (2012).

    CrossRef  Google Scholar 

  23. Miikkulainen, R., et al.: Evolving deep neural networks. arXiv preprint arXiv:1703.00548 (2017)

  24. Nielsen, F., Barbaresco, F.: Geometric Science of Information. Springer, Cham (2015).

    CrossRef  MATH  Google Scholar 

  25. Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer, New York (2006).

    CrossRef  MATH  Google Scholar 

  26. Ramanathan, V., Yao, B., Fei-Fei, L.: Social role discovery in human events. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2475–2482 (2013)

    Google Scholar 

  27. Simeonova, L.: Gradient emotional analysis (2017)

    Google Scholar 

  28. Snijders, T.A.: Markov chain Monte Carlo estimation of exponential random graph models. J. Soc. Struct. 3(2), 1–40 (2002)

    MathSciNet  Google Scholar 

  29. Solomon, D.H., Knobloch, L.K., Theiss, J.A., McLaren, R.M.: Relational turbulence theory: variation in subjective experiences and communication within romantic relationships. Hum. Commun. Res. 42(4), 507–532 (2016)

    CrossRef  Google Scholar 

  30. Theiss, J.A., Solomon, D.H.: A relational turbulence model of communication about irritations in romantic relationships. Commun. Res. 33(5), 391–418 (2006).

  31. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2014).

  32. Watters, N.: Information geometric approaches for neural network algorithms. Ph.D. thesis (2016)

    Google Scholar 

  33. Wong, T.T.: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn. 48(9), 2839–2846 (2015)

    CrossRef  Google Scholar 

  34. Zhang, J., et al.: Detecting relational states in online social networks. In: 2018 5th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC), pp. 38–43. IEEE (2018)

    Google Scholar 

  35. Zhang, J., Tao, X., Tan, L., Lin, J.C.W., Li, H., Chang, L.: On link stability detection for online social networks. In: International Conference on Database and Expert Systems Applications, pp. 320–335. Springer (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Leonard Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, L., Pham, T., Ho, H.K., Kok, T.S. (2020). Discovering Relational Intelligence in Online Social Networks. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2020. Lecture Notes in Computer Science(), vol 12391. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59002-4

  • Online ISBN: 978-3-030-59003-1

  • eBook Packages: Computer ScienceComputer Science (R0)