Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2
CrossRef
MATH
Google Scholar
Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB. vol. 1215, pp. 487–499 (1994)
Google Scholar
Aryabarzan, N., Minaei-Bidgoli, B., Teshnehlab, M.: negFIN: an efficient algorithm for fast mining frequent itemsets. Expert Syst. Appl. 105, 129–143 (2018)
CrossRef
Google Scholar
Chakraborty, T., Dalmia, A., Mukherjee, A., Ganguly, N.: Metrics for community analysis: a survey. ACM Comput. Surv. (CSUR) 50(4), 1–37 (2017)
CrossRef
Google Scholar
Ciaccia, P., Patella, M., Zezula, P.: M-tree: An E cient access method for similarity search in metric spaces. In: Proceedings of the 23rd VLDB Conference, Athens, Greece, pp. 426–435. Citeseer (1997)
Google Scholar
Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF: a java open-source pattern mining library. J. Mach. Learn. Res. 15, 3569–3573 (2014). http://jmlr.org/papers/v15/fournierviger14a.html
Gupta, M.K., Chandra, P.: A comparative study of clustering algorithms. In: 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 801–805. IEEE (2019)
Google Scholar
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)
CrossRef
Google Scholar
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. ACM SIGMOD Rec. 29, 1–12 (2000)
Google Scholar
Kluyver, T., et al.: Jupyter notebooks-a publishing format for reproducible computational workflows. In: ELPUB, pp. 87–90 (2016)
Google Scholar
Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Data sets. Cambridge university press, New York (2020)
Google Scholar
MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts (2010)
Google Scholar
Mitzenmacher, M., Pagh, R., Pham, N.: Efficient estimation for high similarities using odd sketches. In: Proceedings of the 23rd International Conference on World Wide web, pp. 109–118 (2014)
Google Scholar
Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a difference. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 647–652. ACM (2004)
Google Scholar
Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution for precise and approximate similarity search. Inf. Systems 36(4), 721–733 (2011)
CrossRef
Google Scholar
Pei, J., et al.: Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of 17th International Conference on Data Engineering, pp. 215–224. IEEE (2001)
Google Scholar
Peschel, J., Zezula, P.: ADAMiSS: advanced data analysis, mining and search, system. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 351–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_31
CrossRef
Google Scholar
Plantié, M., Crampes, M.: Survey on social community detection. In: Ramzan, N., van Zwol, R., Lee, J.S., Clúver, K., Hua, X.S. (eds.) Social Media Retrieval. CCN, pp. 65–85. Springer, Lodon (2013). https://doi.org/10.1007/978-1-4471-4555-4_4
CrossRef
Google Scholar
Schubert, E., Zimek, A.: ELKI: a large open-source library for data analysis - ELKI release 0.7.5 “heidelberg”. CoRR abs/1902.03616 (2019). http://arxiv.org/abs/1902.03616
Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0014140
CrossRef
Google Scholar
Team, R.C., et al.: R: a language and environment for statistical computing (2013)
Google Scholar
Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: 2002 IEEE International Conference on Data Mining, 2002. Proceedings, pp. 721–724. IEEE (2002)
Google Scholar
Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1–2), 31–60 (2001)
CrossRef
Google Scholar
Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000)
CrossRef
Google Scholar