Skip to main content

Electrodynamic Processes in the Earth’s Ionosphere

  • Chapter
  • First Online:
  • 245 Accesses

Abstract

In the upper atmosphere, with an increase of the altitude and ionization intensification under the influence of solar radiation,  the electrodynamic processes controlled by the magnetic field and plasma flows emanating from the Sun forming the solar wind (SW) begin to play an increasing role. The presence of the magnetic fields in a conducting medium of the moving plasma determines the determinant role of the electrodynamic processes. During interaction of the SW and the interplanetary magnetic field (IMF) with the Earth’s magnetosphere, about 1012 W of energy enters the near-Earth space resulting in the occurrence of the electric fields and currents, acceleration of the charged particles, wave exciting and many other complex and variable processes in the magnetospheric and ionospheric plasma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul Hamid NS, Liu H, Uozumi T, Yumoto K, Veenadhari B, Yoshikawa A, Sanchez JA (2014) Relationship between the equatorial electrojet and global Sq currents at the dip equator region. Earth Planets Space 66 (146). https://doi.org/10.1186/s40623-014-0146-2

  • Agayan S, Bogoutdinov S, Soloviev A, Sidorov R (2016) The study of time Series using the DMA methods and geophysical applications. Data Sci J 15:16. https://doi.org/10.5334/dsj-2016-016

    Article  Google Scholar 

  • Akasofu S-I, Kisabeth J, Ahn B-H, Tomick GJ (1980) The Sqp magnetic variation, equivalent current, and field-aligned current distribution obtained from the IMS Alaska meridian chain of magnetometers. J Geophys Res 85:2085–2091

    Article  Google Scholar 

  • Amory-Mazaudier C (1983) Contribution á létude des courants électriques, des champs électriques et des ventsneutres ionosphériques des moyennes latitudes, variation régulière et variations perturbées, Études de cas à partirdes observations du sondeur á diffusion incohérente de Saint-Santin en relation avec les observations du champgéomagnétique terrestre, Thèse de Doctorat d’ État Université Pierre et Marie Curie

    Google Scholar 

  • Anad F, Amory-Mazaudier C, Hamoudi M, Bourouis S, Abtout A et al (2016) Sq solar variation at Medea Observatory (Algeria), from 2008 to 2011. Adv Space Res 58(9):1682–1695. https://doi.org/10.1016/j.asr.2016.06.029

    Article  Google Scholar 

  • Belakhovsky V, Pilipenko V, Engebretson M, Sakharov Y, Selivanov V (2019) Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. J Space Weather Space Clim 9:A18. https://doi.org/10.1051/swsc/2019015

  • Bello OR, Rabiu AB, Yumoto K, Yizengaw E (2014) Mean solar quiet daily variations in the earth’s magnetic field along East African longitudes. Adv Space Res 54(3):283–289. https://doi.org/10.1016/j.asr.2013.11.058

    Article  Google Scholar 

  • Campbell WH, Matsushita S (1982) Sq currents: a comparison of quiet and active year behavior. J Geophys Res 87(A7):5305–5308. https://doi.org/10.1029/JA087iA07p05305

    Article  Google Scholar 

  • Campbell WH, Schiffmacher WH (1985) Quiet ionospheric currents of the northern hemisphere derived from geomagnetic field records. J Geophys Res 90(A7):6475–6486. https://doi.org/10.1029/JA090iA07p06475

    Article  Google Scholar 

  • Campbell WH () The regular geomagnetic-field variations during quiet solar conditions. In: Jacobs JA (ed) Geomagnetism, vol 3. Academic Press, London, UK (1989), pp 385–460

    Google Scholar 

  • Chapman S (1951) The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere. Arch Meteorol Geophys Bioklimatol Ser A 4:368–390

    Article  Google Scholar 

  • Chapman S, Bartels J (1940) Geomagnetism, vols 1 and 2, 2nd edn. Oxford University Press, Oxford 1962

    Google Scholar 

  • Chen CH, Liu JY, Yumoto K, Lin CH, Fang TW (2007) Equatorial ionization anomaly of the total electron content and equatorial electrojet of ground-based geomagnetic field strength. J Atmos Sol Terr Phys 70:2172–2183

    Article  Google Scholar 

  • Chinkin VE, Soloviev AA, Pilipenko VA (2020) Identification of Vortex Currents in the Ionosphere and Estimation of Their Parameters Based on Ground Magnetic Data. Geomag Aeron 60(5):559–569. https://doi.org/10.1134/S0016793220050035

  • Chmyrev VM, Bilichenko SV, Pokhotelov OA, Marchenko VA, Stenflo L (1988) Alfven vortices and related phenomena in the ionosphere and magnetosphere. Physica Scripta 38:841–854

    Article  Google Scholar 

  • Christiansen F, Papitashvili VO, Neubert T (2002) Seasonal variations of high-latitude field-aligned current system inferred from Ørsted and Magsat observations. J Geophys Res 107(A2). https://doi.org/10.1029/2001JA900104

  • Cnossen I, Richmond AD (2013) Changes in the Earth’s magnetic field over the past century: effects on the ionosphere-thermosphere system and solar quiet (Sq) magnetic variation. J Geophys Res Space Phys 118:849–858. https://doi.org/10.1029/2012JA018447

    Article  Google Scholar 

  • Cressie NAC (1990) The origins of kriging. Math Geol 22:239–252

    Article  Google Scholar 

  • Doumouya V, Vassal J, Cohen Y, Fambitakoye O, Menvielle M (1998) Equatorial electrojet at African longitudes: first results from magnetic measurements. Ann Geophys 16:658–676

    Article  Google Scholar 

  • Elemo E, Rabiu A (2014) Magnetospheric and ionospheric sources of geomagnetic field variations. Open Access Library J 1:1–8. https://doi.org/10.4236/oalib.1101035

    Article  Google Scholar 

  • Elias AG, de Artigas MZ, de Haro Barbas BF (2010) Trends in the solar quiet geomagnetic field variation linked to the Earth’s magnetic field secular variation and increasing concentrations of greenhouse gases. J Geophys Res 115:A08316. https://doi.org/10.1029/2009ja015136

  • Engebretson MJ, Yeoman TK, Oksavik K et al (2013) Multi-instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. J Geophys Res 118:2975–2997. https://doi.org/10.1002/jgra.50291

    Article  Google Scholar 

  • Fujita S, Tanaka T, Motoba T (2005) A numerical simulation of the geomagnetic sudden commencement: 3. SC in the magnetosphere-ionosphere compound system. J Geophys Res 110:A11203. https://doi.org/10.1029/2005ja011055

  • Gjerloev JW (2012) The superMAG data processing technique. J Geophys Res 117:A09213. https://doi.org/10.1029/2012ja017683

  • Glassmeier K-H (1992) Traveling magnetospheric convection twin-vortices: observations and theory. Ann Geophys 10(8):547–565

    Google Scholar 

  • Hardy DA, Gussenhoven MS, Raistrick R, McNeil WJ (1987) Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity. J Geophys Res 92:12275–12294

    Google Scholar 

  • Hasegawa M (1960) On the position of the focus of the geomagnetic Sq current system. J Geophys Res 65:1437–1447

    Article  Google Scholar 

  • Iijima T, Potemra TA (1976) Field-aligned currents in the dayside cusp observed by Triad. J Geophys Res 81(34):5971–5979

    Article  Google Scholar 

  • Kataoka R, Fukunishi H, Lanzerotti LJ, Rosenberg TJ, Weatherwax AT, Engebretson MJ, Watermann J (2002) Traveling convection vortices induced by solar wind tangential discontinuities. J Geophys Res 107(A12):1455. https://doi.org/10.1029/2002JA009459

    Article  Google Scholar 

  • Kirchhoff VWJH, Carpenter LA (1976) The day-to-day variability in ionospheric fields and currents. J Geophys Res 81:2737–2742

    Google Scholar 

  • Kivelson MG, Southwood DJ (1991) Ionospheric travelling vortex generation by solar wind buffeting of the magnetosphere. J Geophys Res 96:1661

    Google Scholar 

  • Kozlovsky A, Turunen T, Koustov A, Parks G (2003) IMF By effects in the magnetospheric convection on closed magnetic field lines. Geophys Res Lett 30(24):2261–2265

    Article  Google Scholar 

  • Lanzerotti LJ, Wolfe A, Trivedi N, Maclennan CG, Medford LV (1990) Magnetic impulse events at high latitudes: magnetopause and boundary layer plasma processes. J Geophys Res 95:97–107. https://doi.org/10.1029/JA095iA01p00097

    Article  Google Scholar 

  • Lanzerotti LJ, Hunsucker RD, Rice D, Lee LC, Wolfe A, Maclennan CG, Medford LV (1992) Ionosphere and ground-based response to field-aligned currents near the magnetospheric cusp regions. J Geophys Res 92:7739–7743

    Article  Google Scholar 

  • Le G, Slavin JA, Strangeway RJ (2010) Space Technology 5 observations of the imbalance of regions 1 and 2 field-aligned currents and its implication to the cross-polar cap Pedersen currents. J Geophys Res 115(A7):A07202. https://doi.org/10.1029/2009JA014979

    Article  Google Scholar 

  • Leontyev SV, Lyatsky WB (1974) Electric field and currents connected with Y_component of interplanetary magnetic field. Planet Space Sci 22:811–819. https://doi.org/10.1016/0032-0633(74)90151-2

  • Love JJ, Chulliat A (2013) An international network of magnetic observatories. Eos Trans Am Geophys Union 94(42):373–374. https://doi.org/10.1002/2013eo420001

  • Luhr H, Blawert A (1994) Ground signatures of traveling convection vortices in “solar wind sources of magnetospheric ultra-low frequency waves”. Geophys Monogr Ser 81:231

    Google Scholar 

  • Lukianova R, Bogoutdinov S (2018) Statistical maps of field-aligned currents inferred from SWARM: dependence on season and interplanetary magnetic field. Rus J Earth Sci 18:ES6003. https://doi.org/10.2205/2018es000640

  • Lukianova R, Christiansen F (2006) Modeling of the global distribution of ionospheric electric field based on realistic maps of field-aligned currents. J Geophys Res 111:A03213. https://doi.org/10.1029/2005ja011465

  • Lukianova R, Christiansen F (2008) Modeling of the UT effect in global distribution of ionospheric electric fields. J Atmos Solar Terr Phys 70:637–645. https://doi.org/10.1016/j.jastp.2007.08.047

  • Lukianova R, Hanuise C, Christiansen F (2008) Asymmetric distribution of the ionospheric electric potential in the opposite hemispheres as inferred from the SuperDARN observations and FAC-based convection model. J Atmos Solar Terr Phys 70:2324–2335. https://doi.org/10.1016/j.jastp.2008.05.015

  • Lukianova RY (2005) Asymmetric distribution of the electric potential in the ionosphere of the opposite hemispheres. Geomagn Aeron 45(4):445–450

    Google Scholar 

  • Lukianova RY, Kozlovsky A, Christiansen F (2010) Asymmetric structures of field-aligned currents and convection of ionospheric plasma controlled by the IMF azimuthal component and season of year. Geomagn Aeron 50:667–678. https://doi.org/10.1134/S0016793210050142

    Article  Google Scholar 

  • Lyatsky VB (1978) Current systems of the magnetosphere-ionosphere disturbances. Russ Nauka Leningrad 199

    Google Scholar 

  • Mansurov SM (1969) New evidence of a relationship between magnetic fields in space and on Earth. Geomag Aeronom 9:622

    Google Scholar 

  • Matsushita S, Maeda H (1965) On the geomagnetic solar quiet daily variation field during the IGY. J Geophys Res 70:2535–2558

    Article  Google Scholar 

  • Matzka J, Olsen N, Maule CF, Pedersen L, Berarducci AM, Macmillan S (2009) Geomagnetic observations on Tristan da Cuhna, South Atlantic Ocean. Ann Geophys 52:97–105

    Google Scholar 

  • Mayaud PN (1965) Analyse morphologique de la variabilite jour a jour de la variation reguliere Sr du champ magnetique terrestre, 1, le systeme de courants Cm (regions non polaires). Ann Geophys 21:515

    Google Scholar 

  • Mazaudier C, Blanc M (1982) Electric currents above Saint-Santin: 2. Model, J. Geophys Res 87(A4):2465–2480. https://doi.org/10.1029/ja087ia04p02465

  • McHenry MA, Clauer CR (1987) Modeled ground magnetic signatures of flux transfer events. J Geophys Res 92:11231–11240. https://doi.org/10.1029/JA092iA10p11231

    Article  Google Scholar 

  • Ngwira CM, Pulkkinen AA, Bernabeu E, Eichner J, Viljanen A, Crowley G (2015) Characteristics of extreme geoelectric fields and their possible causes: localized peak enhancements. Geophys Res Lett 42:6916–6921. https://doi.org/10.1002/2015GL065061

    Article  Google Scholar 

  • Nishida A (1971) Interplanetary origin of electric fields in the magnetosphere. Cosmic Electrodyn 2:350–374

    Google Scholar 

  • Owolabi TP, Rabiu AB, Olayanju G, Bolaji O (2014) Seasonal variation of worldwide solar quiet of the horizontal magnetic field intensity. Appl Phys Res 6. https://doi.org/10.5539/apr.v6n2p82

  • Papitashvili VO, Christiansen F, Neubert T (2002) A new model of field-aligned currents derived from high-precision satellite magnetic field data. Geophys Res Lett 29(14):1683. https://doi.org/10.1029/2001gl014207

  • Rabiu AB, Mamukuyomi AI, Joshua EO (2007) Variability of equatorial ionosphere inferred from geomagnetic field measurements. Bull Astron Soc India 35:607–618

    Google Scholar 

  • Rabiu AB, Folarin OO, Uozumi T, Abdul Hamid NS, Yoshikawa A (2017) Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet. Ann Geophys. 35:535–545. https://doi.org/10.5194/angeo-35-535-2017

  • Rastogi RG, Iyer KN (1976) Quiet day variation of geomagnetic H-field at low latitudes. J Geomagn Geoelectr 28:461–479

    Article  Google Scholar 

  • Richmond AD, Matsushita S, Tarpley JD (1976) On the production mechanism of electric currents and fields in the ionosphere. J Geophys Res 81:547–555

    Article  Google Scholar 

  • Robinson RM, Vondrak RR (1984) Measurements of E region ionization and conductivity produced by solar illumination at high latitudes. J Geophys Res 89(A6):3951–3956. https://doi.org/10.1029/JA089iA06p03951

    Article  Google Scholar 

  • Sibeck DG, Korotova GI (2000) Testing models for traveling convection vortices: two case studies. Geophys Res Lett 27:325–328

    Article  Google Scholar 

  • Soloviev AA, Smirnov AG (2018) Accuracy estimation of the modern core magnetic field models using DMA-methods for recognition of the decreased geomagnetic activity in magnetic observatory data. Izv Phys Solid Earth 54(6):872–885. https://doi.org/10.1134/S1069351318060101

    Article  Google Scholar 

  • Soloviev A, Agayan S, Bogoutdinov S (2016a) Estimation of geomagnetic activity using measure of anomalousness. Ann Geophys 59(6). https://doi.org/10.4401/ag-7116

  • Soloviev A, Smirnov A, Gvishiani A, Karapetyan J, Simonyan A (2019) Quantification of Sq parameters in 2008 based on geomagnetic observatory data. Adv Space Res 64(11):2305–2320. https://doi.org/10.1016/j.asr.2019.08.038

  • Srivastava BJ, Abbas H (1980) An interpretation of the induction arrows at Indian stations. J Geomag Geoelectr 32:SI187–SI196

    Google Scholar 

  • Stening R (1971) Longitude and seasonal variations of the Sq current system. Radio Sci 6:133–137

    Article  Google Scholar 

  • Stening R (1991) Variability of the equatorial electrojet: its relations to the Sq current system and semidiurnal tides. Geophys Res Lett 18:1979–1982

    Article  Google Scholar 

  • Stening R (2008) The shape of the Sq current system. Ann Geophys 26:1767–1775

    Article  Google Scholar 

  • Stening RJ, Winch DE (2013) The ionospheric Sq current system obtained by spherical harmonic analysis. J Geophys Res Space Phys 118:1288–1297. https://doi.org/10.1002/jgra.50194

    Article  Google Scholar 

  • Stening R, Reztsova T, Ivers D, Turner J, Winch D (2005a) A critique of methods of determining the position of the focus of the Sq current system. J Geophys Res 110:A04305. https://doi.org/10.1029/2004JA010784

    Article  Google Scholar 

  • Stening R, Reztsova T, Minh LH (2005b) Day-to-day changes in the latitudes of the foci of the Sq current system and their relation to equatorial electrojet strength. J Geophys Res 110:A10308. https://doi.org/10.1029/2005JA011219

    Article  Google Scholar 

  • Stening R, Reztsova T, Le Huy M (2007) Variation of Sq focus latitudes in the Australian/Pacific region during a quiet sun year. J Atmos Sol Terr Phys 69:734–740

    Article  Google Scholar 

  • Stewart B (1882) Hypothetical views regarding the connection between the state of the sun and terrestrial magnetism. Encycl Brittanica 16:181–184

    Google Scholar 

  • Takeda M (1996) Effects of the strength of the geomagnetic main field strength on the dynamo action in the ionosphere. J Geophys Res 101:7875–7880

    Article  Google Scholar 

  • Takeda M (2002a) Features of global geomagnetic Sq field from 1980 to 1990. J Geophys Res 107(A9):1252. https://doi.org/10.1029/2001JA009210

    Article  Google Scholar 

  • Takeda M (2002b) The correlation between the variation in ionospheric conductivity and that of the geomagnetic Sq field. J Atmos Sol Terr Phys 64:1617–1621

    Article  Google Scholar 

  • Takeda M (2013a) Contribution of wind, conductivity, and geomagnetic main field to the variation in the geomagnetic Sq field. J Geophys Res Space Phys 118:4516–4522. https://doi.org/10.1002/jgra.50386

    Article  Google Scholar 

  • Takeda M (2013b) Difference in seasonal and long-term variations in geomagnetic Sq fields betweengeomagnetic Y and Z components. J Geophys Res Space Physics 118:2522–2526. https://doi.org/10.1002/jgra.50128

    Article  Google Scholar 

  • Takeda M, Iyemori T, Saito A (2003) Relationship between electric field and currents in the ionosphere and the geomagnetic Sq field. J Geophys Res 108(A5):1183. https://doi.org/10.1029/2002JA009659

    Article  Google Scholar 

  • Vichare G, Bhaskar A, Ramesh DS (2016) Are the equatorial electrojet and the Sq coupled systems? Transfer entropy approach. Adv Space Res 57(9):1859–1870. https://doi.org/10.1016/j.asr.2016.01.020

    Article  Google Scholar 

  • Watanabe M, Sofko GJ, Kabin K, Rankin R, Ridley AJ, Clauer CR, Gombosi TI (2007) Origin of the interhemispheric potential mismatch of merging cells for interplanetary magnetic field BY_dominated periods. J Geophys Res 112:A10205. https://doi.org/10.1029/2006ja012179

  • Weimer DR (2001) Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from dynamics explorer 2 data. J Geophys Res 106:12889–12902. https://doi.org/10.1029/2000ja000295

  • Yamazaki Y, Maute A (2017) Sq and EEJ—a review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci Rev 206:299. https://doi.org/10.1007/s11214-016-0282-z

    Article  Google Scholar 

  • Yamazaki Y, Yumoto K, Uozumi T, Abe S, Cardinal MG, McNamara D, Marshall R, Shevtsov BM, Solovyev SI (2010) Reexamination of the Sq-EEJ relationship based on extended magnetometer networks in the east Asian region. J Geophys Res 115:A09319. https://doi.org/10.1029/2010JA015339

    Article  Google Scholar 

  • Yamazaki Y, Yumoto K, Cardinal MG, Fraser BJ, Hattori P, Kakinami Y, Liu JY, Lynn KJW, Marshall R, McNamara D, Nagatsuma T, Nikiforov VM, Otadoy RE, Ruhimat M, Shevtsov BM, Shiokawa K, Abe S, Uozumi T, Yoshikawa A (2011) An empirical model of the quiet daily geomagnetic field variation. J Geophys Res 116:A10312. https://doi.org/10.1029/2011JA016487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Gvishiani .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gvishiani, A., Soloviev, A. (2020). Electrodynamic Processes in the Earth’s Ionosphere. In: Observations, Modeling and Systems Analysis in Geomagnetic Data Interpretation . Springer, Cham. https://doi.org/10.1007/978-3-030-58969-1_4

Download citation

Publish with us

Policies and ethics