Skip to main content

3D Printing of Transparent Glasses

  • 956 Accesses

Part of the Springer Series in Optical Sciences book series (SSOS,volume 233)

Abstract

Glasses have shaped the field of optics and photonics like no other material—enabling numerous sensing and imaging systems, optical data transfer, and laser systems. Transparent silicate glasses are the material of choice for high-performance optical components as they combine high optical transparency with high thermal, chemical, and mechanical stability. However, precision shaping of glasses is notoriously difficult and mainly limited to grinding and polishing processes for macroscopic objects and hazardous etching processes for the fabrication of microstructures. In recent years, considerable efforts have been made to making glasses accessible to the 3D printing revolution of the twenty-first century. When silicate glasses entered the field of 3D printing, two major directions came up—direct 3D printing of low melting glasses at high temperatures and indirect glass printing of glass precursors using technologies borrowed from the techniques of polymer 3D printing. These precursors can be printed at room temperature and turned into transparent glass in a subsequent heat treatment. In this chapter, we outline the latest developments of 3D printing of transparent silicate glasses.

Keywords

  • Additive manufacturing
  • 3D printing
  • Fused silica glass
  • Multicomponent glass
  • Nanocomposites
  • Sol-gel
  • Glassomer
  • Stereolithography
  • Direct ink writing
  • Advanced manufacturing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-58960-8_4
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-58960-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11

References

  1. Bach, H., & Neuroth, N. (2012). The properties of optical glass. Berlin: Springer Science & Business Media.

    Google Scholar 

  2. Zanotto, E. D., & Mauro, J. C. (2017). Journal of Non-Crystalline Solids, 471, 490.

    ADS  CrossRef  Google Scholar 

  3. Bansal, N. P. & Doremus, R. H. (2013). Handbook of glass properties (p. 680). Orlando: Elsevier.

    Google Scholar 

  4. Ikushima, A., Fujiwara, T., & Saito, K. (2000). Journal of Applied Physics, 88, 1201.

    ADS  CrossRef  Google Scholar 

  5. Deng, Z., Breval, E., & Pantano, C. G. (1988). Journal of Non-Crystalline Solids, 100, 364.

    ADS  CrossRef  Google Scholar 

  6. Hülsenberg, D., Harnisch, A., & Bismarck, A. (2005). Microstructuring of glasses (Materials science) (Vol. 87, 1st ed., p. 323). Berlin: Springer.

    Google Scholar 

  7. Takahashi, M., Murakoshi, Y., Maeda, R., & Hasegawa, K. (2007). Microsystem Technologies, 13, 379.

    CrossRef  Google Scholar 

  8. Takahashi, M., Sugimoto, K., & Maeda, R. (2005). Japanese Journal of Applied Physics, 44, 5600.

    ADS  CrossRef  Google Scholar 

  9. Klocke, F., Dambon, O., Liu, G., & Dukwen, J. (2016). Production Engineering, 10, 367.

    CrossRef  Google Scholar 

  10. Herman, P. R., Beckley, K. R., Jackson, B. C., Kurosawa, K., Moore, D., Yamanishi, T., & Yang, J. (1997). In Excimer lasers, optics, and applications (International Society for Optics and Photonics (pp. 86).

    Google Scholar 

  11. Gattass, R. R., & Mazur, E. (2008). Nature Photonics, 2, 219.

    ADS  CrossRef  Google Scholar 

  12. Lin, J., Yu, S., Ma, Y., Fang, W., He, F., Qiao, L., Tong, L., Cheng, Y., & Xu, Z. (2012). Optics Express, 20, 10212.

    ADS  CrossRef  Google Scholar 

  13. Hnatovsky, C., Taylor, R., Simova, E., Rajeev, P., Rayner, D., Bhardwaj, V., & Corkum, P. (2006). Applied Physics A, 84, 47.

    CrossRef  Google Scholar 

  14. Kiyama, S., Matsuo, S., Hashimoto, S., & Morihira, Y. (2009). The Journal of Physical Chemistry C, 113, 11560.

    CrossRef  Google Scholar 

  15. Sugioka, K., & Cheng, Y. (2013). Femtosecond laser 3D micromachining for microfluidic and optofluidic applications. Berlin: Springer Science & Business Media.

    Google Scholar 

  16. Marcinkevičius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., & Nishii, J. (2001). Optics Letters, 26, 277.

    ADS  CrossRef  Google Scholar 

  17. He, F., Lin, J., & Cheng, Y. (2011). Applied Physics B: Lasers and Optics, 105, 379.

    ADS  CrossRef  Google Scholar 

  18. Marzolin, C., Smith, S. P., Prentiss, M., & Whitesides, G. M. (1998). Advanced Materials, 10, 571.

    CrossRef  Google Scholar 

  19. Kajihara, K. (2013). Journal of Asian Ceramic Societies, 1, 121.

    CrossRef  Google Scholar 

  20. Lambert, A., Valiulis, S., & Cheng, Q. (2018). ACS Sensors, 3, 2475.

    CrossRef  Google Scholar 

  21. Camposeo, A., Persano, L., Farsari, M., & Pisignano, D. (2019). Advanced Optical Materials, 7, 1800419.

    CrossRef  Google Scholar 

  22. Lindenmann, N., Balthasar, G., Hillerkuss, D., Schmogrow, R., Jordan, M., Leuthold, J., Freude, W., & Koos, C. (2012). Optics Express, 20, 17667.

    ADS  CrossRef  Google Scholar 

  23. Gissibl, T., Thiele, S., Herkommer, A., & Giessen, H. (2016). Nature Photonics, 10, 554.

    ADS  CrossRef  Google Scholar 

  24. Dietrich, P.-I., et al. (2018). Nature Photonics, 12, 241.

    ADS  CrossRef  Google Scholar 

  25. Deubel, M., Von Freymann, G., Wegener, M., Pereira, S., Busch, K., & Soukoulis, C. M. (2004). Nature Materials, 3, 444.

    ADS  CrossRef  Google Scholar 

  26. Waldbaur, A., Rapp, H., Lange, K., & Rapp, B. E. (2011). Analytical Methods, 3, 2681.

    CrossRef  Google Scholar 

  27. Klein, J., et al. (2015). 3D printing and Additive manufacturing 2, 92.

    Google Scholar 

  28. Klocke, F., McClung, A., & Ader, C. (2004). In Solid freeform fabrication symposium proceedings, Austin, TX (pp. 3).

    Google Scholar 

  29. Luo, J., Pan, H., & Kinzel, E. C. (2014). Journal of Manufacturing Science and Engineering, 136, 061024.

    CrossRef  Google Scholar 

  30. Bourell, D., Stucker, B., Marchelli, G., Prabhakar, R., Storti, D., & Ganter, M. (2011). Rapid Prototyping Journal, 17, 187.

    CrossRef  Google Scholar 

  31. Gal-Or, E., et al. (2019). Analytical Methods, 11, 1802.

    CrossRef  Google Scholar 

  32. Luo, J., Gilbert, L. J., Bristow, D. A., Landers, R. G., Goldstein, J. T., Urbas, A. M., & Kinzel, E. C. (2016). In SPIE lASE (International Society for Optics and Photonics), p. 97380Y.

    Google Scholar 

  33. Johnson, J. E., et al. (2019). In Laser 3D manufacturing VI (International Society for Optics and Photonics), p. 109090Q.

    Google Scholar 

  34. Kotz, F., et al. (2017). Nature, 544, 337.

    ADS  CrossRef  Google Scholar 

  35. Kotz, F., Plewa, K., Bauer, W., Hanemann, T., Waldbaur, A., Wilhelm, E., Neumann, C., & Rapp, B. E. (2015). In SPIE BiOS (International Society for Optics and Photonics), p. 932003.

    Google Scholar 

  36. Kotz, F., et al. (2016). Advanced Materials, 28, 4646.

    CrossRef  Google Scholar 

  37. Kotz, F., et al. (2018). Advanced Materials, 30, 1707100.

    CrossRef  Google Scholar 

  38. Totsu, K., Fujishiro, K., Tanaka, S., & Esashi, M. (2006). Sensors and Actuators A: Physical, 130, 387.

    CrossRef  Google Scholar 

  39. Atencia, J., Barnes, S., Douglas, J., Meacham, M., & Locascio, L. E. (2007). Lab on a Chip, 7, 1567.

    CrossRef  Google Scholar 

  40. Chu, Y., Fu, X., Luo, Y., Canning, J., Tian, Y., Cook, K., Zhang, J., & Peng, G.-D. (2019). Optics Letters, 44, 5358.

    ADS  CrossRef  Google Scholar 

  41. Langenhorst, M., et al. (2019). ACS Applied Materials & Interfaces, 11, 35015.

    CrossRef  Google Scholar 

  42. Kotz, F., Risch, P., Helmer, D., & Rapp, B. E. (2019). Advanced Materials, 1805982.

    Google Scholar 

  43. Kotz, F., Helmer, D., & Rapp, B. (2018). In Microfluidics, BioMEMS, and medical microsystems XVI (International Society for Optics and Photonics), p. 104910A.

    Google Scholar 

  44. Kotz, F., et al. (2019). Nature Communications, 10, 1439.

    ADS  CrossRef  Google Scholar 

  45. Nguyen, D. T., et al. (2017). Advanced Materials, 29, 1701181.

    CrossRef  Google Scholar 

  46. Cooperstein, I., Shukrun, E., Press, O., Kamyshny, A., & Magdassi, S. (2018). ACS Applied Materials & Interfaces, 10, 18879.

    CrossRef  Google Scholar 

  47. Liu, C., Qian, B., Ni, R., Liu, X., & Qiu, J. (2018). RSC Advances, 8, 31564.

    CrossRef  Google Scholar 

  48. Li, C., Dong, B., Li, S., & Song, C. (2007). Chemical Physics Letters, 443, 426.

    ADS  CrossRef  Google Scholar 

  49. Malyarevich, A. M., Denisov, I. A., Yumashev, K. V., Dymshits, O. S., Zhilin, A. A., & Kang, U. (2001). Applied Optics, 40, 4322.

    ADS  CrossRef  Google Scholar 

  50. Destino, J. F., et al. (2018). Advanced Materials Technologies, 1700323.

    Google Scholar 

  51. Brusatin, G., Guglielmi, M., Innocenzi, P., Martucci, A., Battaglin, G., Pelli, S., & Righini, G. (1997). Journal of Non-Crystalline Solids, 220, 202.

    ADS  CrossRef  Google Scholar 

  52. Kawachi, M., Yasu, M., & Edahiro, T. (1983). Electronics Letters, 19, 583.

    ADS  CrossRef  Google Scholar 

  53. Shingyouchi, K., & Konishi, S. (1990). Applied Optics, 29, 4061.

    ADS  CrossRef  Google Scholar 

  54. Sasan, K., et al. (2020). ACS Applied Materials & Interfaces.

    Google Scholar 

  55. Moore, D. G., Barbera, L., Masania, K., & Studart, A. R. (2020). Nature Materials, 19, 212.

    ADS  CrossRef  Google Scholar 

  56. Tumbleston, J. R., et al. (2015). Science, 347, 1349.

    ADS  CrossRef  Google Scholar 

  57. Janusziewicz, R., Tumbleston, J. R., Quintanilla, A. L., Mecham, S. J., & DeSimone, J. M. (2016). Proceedings of the National Academy of Sciences, 113, 11703.

    CrossRef  Google Scholar 

  58. Kawata, S., Sun, H.-B., Tanaka, T., & Takada, K. (2001). Nature, 412, 697.

    ADS  CrossRef  Google Scholar 

  59. Clasen, R., & Oetzel, C. (2009). Key Engineering Materials, 412, 45.

    CrossRef  Google Scholar 

  60. Zhu, H., Holl, M., Ray, T., Bhushan, S., & Meldrum, D. R. (2009). Journal of Micromechanics and Microengineering, 19, 065013.

    ADS  CrossRef  Google Scholar 

  61. Nagarah, J. M., & Wagenaar, D. A. (2012). Journal of Micromechanics and Microengineering, 22, 035011.

    ADS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Kotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kotz, F., Helmer, D., Rapp, B.E. (2021). 3D Printing of Transparent Glasses. In: Heinrich, A. (eds) 3D Printing of Optical Components. Springer Series in Optical Sciences, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-58960-8_4

Download citation