Advertisement

3D Printing of Transparent Glasses

Chapter
  • 366 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 233)

Abstract

Glasses have shaped the field of optics and photonics like no other material—enabling numerous sensing and imaging systems, optical data transfer, and laser systems. Transparent silicate glasses are the material of choice for high-performance optical components as they combine high optical transparency with high thermal, chemical, and mechanical stability. However, precision shaping of glasses is notoriously difficult and mainly limited to grinding and polishing processes for macroscopic objects and hazardous etching processes for the fabrication of microstructures. In recent years, considerable efforts have been made to making glasses accessible to the 3D printing revolution of the twenty-first century. When silicate glasses entered the field of 3D printing, two major directions came up—direct 3D printing of low melting glasses at high temperatures and indirect glass printing of glass precursors using technologies borrowed from the techniques of polymer 3D printing. These precursors can be printed at room temperature and turned into transparent glass in a subsequent heat treatment. In this chapter, we outline the latest developments of 3D printing of transparent silicate glasses.

Keywords

Additive manufacturing 3D printing Fused silica glass Multicomponent glass Nanocomposites Sol-gel Glassomer Stereolithography Direct ink writing Advanced manufacturing 

References

  1. 1.
    Bach, H., & Neuroth, N. (2012). The properties of optical glass. Berlin: Springer Science & Business Media.Google Scholar
  2. 2.
    Zanotto, E. D., & Mauro, J. C. (2017). Journal of Non-Crystalline Solids, 471, 490.ADSCrossRefGoogle Scholar
  3. 3.
    Bansal, N. P. & Doremus, R. H. (2013). Handbook of glass properties (p. 680). Orlando: Elsevier.Google Scholar
  4. 4.
    Ikushima, A., Fujiwara, T., & Saito, K. (2000). Journal of Applied Physics, 88, 1201.ADSCrossRefGoogle Scholar
  5. 5.
    Deng, Z., Breval, E., & Pantano, C. G. (1988). Journal of Non-Crystalline Solids, 100, 364.ADSCrossRefGoogle Scholar
  6. 6.
    Hülsenberg, D., Harnisch, A., & Bismarck, A. (2005). Microstructuring of glasses (Materials science) (Vol. 87, 1st ed., p. 323). Berlin: Springer.Google Scholar
  7. 7.
    Takahashi, M., Murakoshi, Y., Maeda, R., & Hasegawa, K. (2007). Microsystem Technologies, 13, 379.CrossRefGoogle Scholar
  8. 8.
    Takahashi, M., Sugimoto, K., & Maeda, R. (2005). Japanese Journal of Applied Physics, 44, 5600.ADSCrossRefGoogle Scholar
  9. 9.
    Klocke, F., Dambon, O., Liu, G., & Dukwen, J. (2016). Production Engineering, 10, 367.CrossRefGoogle Scholar
  10. 10.
    Herman, P. R., Beckley, K. R., Jackson, B. C., Kurosawa, K., Moore, D., Yamanishi, T., & Yang, J. (1997). In Excimer lasers, optics, and applications (International Society for Optics and Photonics (pp. 86).Google Scholar
  11. 11.
    Gattass, R. R., & Mazur, E. (2008). Nature Photonics, 2, 219.ADSCrossRefGoogle Scholar
  12. 12.
    Lin, J., Yu, S., Ma, Y., Fang, W., He, F., Qiao, L., Tong, L., Cheng, Y., & Xu, Z. (2012). Optics Express, 20, 10212.ADSCrossRefGoogle Scholar
  13. 13.
    Hnatovsky, C., Taylor, R., Simova, E., Rajeev, P., Rayner, D., Bhardwaj, V., & Corkum, P. (2006). Applied Physics A, 84, 47.CrossRefGoogle Scholar
  14. 14.
    Kiyama, S., Matsuo, S., Hashimoto, S., & Morihira, Y. (2009). The Journal of Physical Chemistry C, 113, 11560.CrossRefGoogle Scholar
  15. 15.
    Sugioka, K., & Cheng, Y. (2013). Femtosecond laser 3D micromachining for microfluidic and optofluidic applications. Berlin: Springer Science & Business Media.Google Scholar
  16. 16.
    Marcinkevičius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., & Nishii, J. (2001). Optics Letters, 26, 277.ADSCrossRefGoogle Scholar
  17. 17.
    He, F., Lin, J., & Cheng, Y. (2011). Applied Physics B: Lasers and Optics, 105, 379.ADSCrossRefGoogle Scholar
  18. 18.
    Marzolin, C., Smith, S. P., Prentiss, M., & Whitesides, G. M. (1998). Advanced Materials, 10, 571.CrossRefGoogle Scholar
  19. 19.
    Kajihara, K. (2013). Journal of Asian Ceramic Societies, 1, 121.CrossRefGoogle Scholar
  20. 20.
    Lambert, A., Valiulis, S., & Cheng, Q. (2018). ACS Sensors, 3, 2475.CrossRefGoogle Scholar
  21. 21.
    Camposeo, A., Persano, L., Farsari, M., & Pisignano, D. (2019). Advanced Optical Materials, 7, 1800419.CrossRefGoogle Scholar
  22. 22.
    Lindenmann, N., Balthasar, G., Hillerkuss, D., Schmogrow, R., Jordan, M., Leuthold, J., Freude, W., & Koos, C. (2012). Optics Express, 20, 17667.ADSCrossRefGoogle Scholar
  23. 23.
    Gissibl, T., Thiele, S., Herkommer, A., & Giessen, H. (2016). Nature Photonics, 10, 554.ADSCrossRefGoogle Scholar
  24. 24.
    Dietrich, P.-I., et al. (2018). Nature Photonics, 12, 241.ADSCrossRefGoogle Scholar
  25. 25.
    Deubel, M., Von Freymann, G., Wegener, M., Pereira, S., Busch, K., & Soukoulis, C. M. (2004). Nature Materials, 3, 444.ADSCrossRefGoogle Scholar
  26. 26.
    Waldbaur, A., Rapp, H., Lange, K., & Rapp, B. E. (2011). Analytical Methods, 3, 2681.CrossRefGoogle Scholar
  27. 27.
    Klein, J., et al. (2015). 3D printing and Additive manufacturing 2, 92.Google Scholar
  28. 28.
    Klocke, F., McClung, A., & Ader, C. (2004). In Solid freeform fabrication symposium proceedings, Austin, TX (pp. 3).Google Scholar
  29. 29.
    Luo, J., Pan, H., & Kinzel, E. C. (2014). Journal of Manufacturing Science and Engineering, 136, 061024.CrossRefGoogle Scholar
  30. 30.
    Bourell, D., Stucker, B., Marchelli, G., Prabhakar, R., Storti, D., & Ganter, M. (2011). Rapid Prototyping Journal, 17, 187.CrossRefGoogle Scholar
  31. 31.
    Gal-Or, E., et al. (2019). Analytical Methods, 11, 1802.CrossRefGoogle Scholar
  32. 32.
    Luo, J., Gilbert, L. J., Bristow, D. A., Landers, R. G., Goldstein, J. T., Urbas, A. M., & Kinzel, E. C. (2016). In SPIE lASE (International Society for Optics and Photonics), p. 97380Y.Google Scholar
  33. 33.
    Johnson, J. E., et al. (2019). In Laser 3D manufacturing VI (International Society for Optics and Photonics), p. 109090Q.Google Scholar
  34. 34.
    Kotz, F., et al. (2017). Nature, 544, 337.ADSCrossRefGoogle Scholar
  35. 35.
    Kotz, F., Plewa, K., Bauer, W., Hanemann, T., Waldbaur, A., Wilhelm, E., Neumann, C., & Rapp, B. E. (2015). In SPIE BiOS (International Society for Optics and Photonics), p. 932003.Google Scholar
  36. 36.
    Kotz, F., et al. (2016). Advanced Materials, 28, 4646.CrossRefGoogle Scholar
  37. 37.
    Kotz, F., et al. (2018). Advanced Materials, 30, 1707100.CrossRefGoogle Scholar
  38. 38.
    Totsu, K., Fujishiro, K., Tanaka, S., & Esashi, M. (2006). Sensors and Actuators A: Physical, 130, 387.CrossRefGoogle Scholar
  39. 39.
    Atencia, J., Barnes, S., Douglas, J., Meacham, M., & Locascio, L. E. (2007). Lab on a Chip, 7, 1567.CrossRefGoogle Scholar
  40. 40.
    Chu, Y., Fu, X., Luo, Y., Canning, J., Tian, Y., Cook, K., Zhang, J., & Peng, G.-D. (2019). Optics Letters, 44, 5358.ADSCrossRefGoogle Scholar
  41. 41.
    Langenhorst, M., et al. (2019). ACS Applied Materials & Interfaces, 11, 35015.CrossRefGoogle Scholar
  42. 42.
    Kotz, F., Risch, P., Helmer, D., & Rapp, B. E. (2019). Advanced Materials, 1805982.Google Scholar
  43. 43.
    Kotz, F., Helmer, D., & Rapp, B. (2018). In Microfluidics, BioMEMS, and medical microsystems XVI (International Society for Optics and Photonics), p. 104910A.Google Scholar
  44. 44.
    Kotz, F., et al. (2019). Nature Communications, 10, 1439.ADSCrossRefGoogle Scholar
  45. 45.
    Nguyen, D. T., et al. (2017). Advanced Materials, 29, 1701181.CrossRefGoogle Scholar
  46. 46.
    Cooperstein, I., Shukrun, E., Press, O., Kamyshny, A., & Magdassi, S. (2018). ACS Applied Materials & Interfaces, 10, 18879.CrossRefGoogle Scholar
  47. 47.
    Liu, C., Qian, B., Ni, R., Liu, X., & Qiu, J. (2018). RSC Advances, 8, 31564.CrossRefGoogle Scholar
  48. 48.
    Li, C., Dong, B., Li, S., & Song, C. (2007). Chemical Physics Letters, 443, 426.ADSCrossRefGoogle Scholar
  49. 49.
    Malyarevich, A. M., Denisov, I. A., Yumashev, K. V., Dymshits, O. S., Zhilin, A. A., & Kang, U. (2001). Applied Optics, 40, 4322.ADSCrossRefGoogle Scholar
  50. 50.
    Destino, J. F., et al. (2018). Advanced Materials Technologies, 1700323.Google Scholar
  51. 51.
    Brusatin, G., Guglielmi, M., Innocenzi, P., Martucci, A., Battaglin, G., Pelli, S., & Righini, G. (1997). Journal of Non-Crystalline Solids, 220, 202.ADSCrossRefGoogle Scholar
  52. 52.
    Kawachi, M., Yasu, M., & Edahiro, T. (1983). Electronics Letters, 19, 583.ADSCrossRefGoogle Scholar
  53. 53.
    Shingyouchi, K., & Konishi, S. (1990). Applied Optics, 29, 4061.ADSCrossRefGoogle Scholar
  54. 54.
    Sasan, K., et al. (2020). ACS Applied Materials & Interfaces.Google Scholar
  55. 55.
    Moore, D. G., Barbera, L., Masania, K., & Studart, A. R. (2020). Nature Materials, 19, 212.ADSCrossRefGoogle Scholar
  56. 56.
    Tumbleston, J. R., et al. (2015). Science, 347, 1349.ADSCrossRefGoogle Scholar
  57. 57.
    Janusziewicz, R., Tumbleston, J. R., Quintanilla, A. L., Mecham, S. J., & DeSimone, J. M. (2016). Proceedings of the National Academy of Sciences, 113, 11703.CrossRefGoogle Scholar
  58. 58.
    Kawata, S., Sun, H.-B., Tanaka, T., & Takada, K. (2001). Nature, 412, 697.ADSCrossRefGoogle Scholar
  59. 59.
    Clasen, R., & Oetzel, C. (2009). Key Engineering Materials, 412, 45.CrossRefGoogle Scholar
  60. 60.
    Zhu, H., Holl, M., Ray, T., Bhushan, S., & Meldrum, D. R. (2009). Journal of Micromechanics and Microengineering, 19, 065013.ADSCrossRefGoogle Scholar
  61. 61.
    Nagarah, J. M., & Wagenaar, D. A. (2012). Journal of Micromechanics and Microengineering, 22, 035011.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Microsystems Engineering, Laboratory of Process Technology|NeptunLabUniversity of FreiburgFreiburg im BreisgauGermany

Personalised recommendations