Skip to main content

Core-Guided and Core-Boosted Search for CP

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12296)

Abstract

Core-guided search has proven to be the state-of-the-art in finding optimal solutions for maximum Boolean satisfiability and these techniques have recently been successfully imported in constraint programming. While effective on a wide range of problems, the methods are direct translations of their propositional logic counterparts. We propose two reformulation techniques that take advantage of the rich formalism offered by constraint programming rather than relying on propositional logic strategies, and generalise two existing techniques to improve core-extraction and the overall performance. Our experiments demonstrate the effectiveness of our approaches over the conventional (core-guided) CP methods, both in terms of proving optimality and quickly computing high-quality solutions.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-58942-4_14
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-58942-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in clasp. In: Proceedings of the ICLP Technical Communications. LIPIcs, vol. 17, pp. 211–221. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

    Google Scholar 

  2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_9

    CrossRef  Google Scholar 

  3. Ansótegui, C., Gabàs, J.: WPM3: An (in)complete algorithm for weighted partial MaxSAT. Artif. Intell. 250, 37–57 (2017)

    MathSciNet  CrossRef  Google Scholar 

  4. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_18

    CrossRef  MATH  Google Scholar 

  5. Bacchus, F., Narodytska, N.: Cores in core based MaxSat algorithms: an analysis. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 7–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_2

    CrossRef  Google Scholar 

  6. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_8

    CrossRef  MATH  Google Scholar 

  7. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incomplete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_3

    CrossRef  Google Scholar 

  8. Berg, J., Järvisalo, M.: Weight-aware core extraction in SAT-based MaxSAT solving. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 652–670. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_42

    CrossRef  Google Scholar 

  9. Berg, J., Järvisalo, M.: Unifying reasoning and core-guided search for maximum satisfiability. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 287–303. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_19

    CrossRef  Google Scholar 

  10. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_13

    CrossRef  MATH  Google Scholar 

  11. Demirović, E., Stuckey, P.J.: Local-style search in the linear MaxSAT algorithm: a computational study of solution-based phase saving. In: Pragmatics if SAT Workshop (2018)

    Google Scholar 

  12. Demirović, E., Stuckey, P.J.: Techniques inspired by local search for incomplete MaxSAT and the linear algorithm: varying resolution and solution-guided search. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 177–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_11

    CrossRef  Google Scholar 

  13. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

    CrossRef  Google Scholar 

  14. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_29

    CrossRef  Google Scholar 

  15. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_25

    CrossRef  Google Scholar 

  16. Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., Marques-Silva, J.: Progression in maximum satisfiability. In: Proceedings of the 21st European Conference on Artificial Intelligence, pp. 453–458 (2014)

    Google Scholar 

  17. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: a python-based MaxSAT solver. In: MaxSAT Evaluation 2018, p. 22 (2018)

    Google Scholar 

  18. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial max-sat solver. J. Satisf. Boolean Model. Comput. 8, 95–100 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Marriott, K., Stuckey, P.: Programming with Constraints: An Introduction. MITPress, Cambridge (1998)

    CrossRef  Google Scholar 

  20. Martins, R., Manquinho, V.M., Lynce, I.: Improving linear search algorithms with model-based approaches for MaxSAT solving. J. Exp. Theor. Artif. Intell. 27(5), 673–701 (2015)

    CrossRef  Google Scholar 

  21. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_41

    CrossRef  Google Scholar 

  22. Morgado, A., Heras, F., Marques-Silva, J.: Model-guided approaches for MaxSAT solving. In: Proceedings of the ICTAI, pp. 931–938. IEEE Computer Society (2013)

    Google Scholar 

  23. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)

    MathSciNet  CrossRef  Google Scholar 

  24. Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_34

    CrossRef  MATH  Google Scholar 

  25. Schulte, C., Tack, G.: View-based propagator derivation. Constraints 18(1), 75–107 (2013)

    MathSciNet  CrossRef  Google Scholar 

  26. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge 2008–2013. AI Mag. 35(2), 55–60 (2014)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Gange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gange, G., Berg, J., Demirović, E., Stuckey, P.J. (2020). Core-Guided and Core-Boosted Search for CP. In: Hebrard, E., Musliu, N. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2020. Lecture Notes in Computer Science(), vol 12296. Springer, Cham. https://doi.org/10.1007/978-3-030-58942-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58942-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58941-7

  • Online ISBN: 978-3-030-58942-4

  • eBook Packages: Computer ScienceComputer Science (R0)