Skip to main content

The Issue of Solid-Solid Contact in Catalytic Soot Oxidation and the Benefits of Catalyst Nanostructuring to Regeneration of Catalytic Diesel Particulate Filters

  • Chapter
  • First Online:
Nanostructured Catalysts for Environmental Applications

Abstract

Catalytic (i.e., catalyst-coated) diesel particulate filters (DPFs) represent the best option for removing particulate matter, which is mostly composed of soot, from diesel engine exhaust. In this chapter, the main critical issue for regeneration of catalytic DPFs, i.e., the contact in the solid-solid reaction between soot and catalyst, is addressed ranging from powdered soot-catalyst mixtures to real catalytic filter. The main factors affecting the soot-catalyst contact are discussed in the light of the most important literature results, with a particular emphasis on nanostructured catalysts. The improvement in catalytic properties at the soot-catalyst interface occurring at the nanoscale is analyzed. Challenges to be addressed in the near future are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Tandon, A. Heibel, J. Whitmore, N. Kekre, K. Chithapragada, Measurement and prediction of filtration efficiency evolution of soot loaded diesel particulate filters. Chem. Eng. Sci. 65, 4751–4760 (2010)

    Article  CAS  Google Scholar 

  2. K. Yang, J.T. Fox, R. Hunsicker, Characterizing diesel particulate filter failure during commercial fleet use due to pinholes, melting, cracking, and fouling. Emiss. Control Sci. Technol. 2, 145–155 (2016)

    Article  Google Scholar 

  3. V.R. Pérez, A. Bueno-López, Catalytic regeneration of diesel particulate filters: comparison of Pt and CePr active phases. Chem. Eng. J. 279, 79–85 (2015)

    Article  Google Scholar 

  4. V. Di Sarli, G. Landi, L. Lisi, A. Saliva, A. Di Benedetto, Catalytic diesel particulate filters with highly dispersed ceria: effect of the soot-catalyst contact on the regeneration performance. Appl. Catal. B Environ. 197, 116–124 (2016)

    Article  Google Scholar 

  5. L. Rocher, T. Seguelong, V. Harle, M. Lallemand, M. Pudlarz, M. Macduff, New generation fuel borne catalyst for reliable DPF operation in globally diverse fuels. SAE Technical Paper 2011-01-0297 (2011)

    Google Scholar 

  6. L. De Marzi, A. Monaco, J. De Lapuente, D. Ramos, M. Borras, M. Di Gioacchino, S. Santucci, A. Poma, Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int. J. Mol. Sci. 14, 3065–3077 (2013)

    Article  Google Scholar 

  7. L.F. Nascimento, J.F. Lima, P.C. de Sousa Filho, O.A. Serra, Control of diesel particulate emission based on Ag/CeOx/FeOy catalysts supported on cordierite. Chem. Eng. J. 290, 454–464 (2016)

    Article  CAS  Google Scholar 

  8. V. Di Sarli, G. Landi, L. Lisi, A. Di Benedetto, Highly dispersed ceria for catalytic regeneration of diesel particulate filter. Adv. Sci. Lett. 23, 5909–5911 (2017)

    Article  Google Scholar 

  9. C. Su, Y. Wang, A. Kumar, P.J. McGinn, Simulating real world soot-catalyst contact conditions for lab-scale catalytic soot oxidation studies. Catalysts 8, 247 (2018)

    Article  Google Scholar 

  10. S. Cao, F.F. Tao, Y. Tang, Y. Li, J. Yu, Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 45, 4747–4765 (2016)

    Article  CAS  Google Scholar 

  11. M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998)

    Article  CAS  Google Scholar 

  12. F.Y. Kwong, A. Klapars, S.L. Buchwald, Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere. Org. Lett. 4, 581–584 (2002)

    Article  CAS  Google Scholar 

  13. F.Y. Kwong, S.L. Buchwald, Mild and efficient copper-catalyzed amination of aryl bromides with primary alkylamines. Org. Lett. 5, 793–796 (2003)

    Article  CAS  Google Scholar 

  14. H. Rao, Y. Jin, H. Fu, Y. Jiang, Y. Zhao, A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: pyrrolidine-2-phosphonic acid phenyl monoester. Chem. Eur. J. 12, 3636–3646 (2006)

    Article  CAS  Google Scholar 

  15. B.R. Stanmore, J.F. Brilhac, P. Gilot, The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39, 2247–2268 (2001)

    Article  CAS  Google Scholar 

  16. A. Bueno-López, Diesel soot combustion ceria catalysts. Appl. Catal. B Environ. 146, 1–11 (2014)

    Article  Google Scholar 

  17. L. Hensgen, K. Stöwe, Soot-catalyst contact studies in combustion processes using nano-scaled ceria as test material. Catal. Today 159, 100–107 (2011)

    Article  CAS  Google Scholar 

  18. P. Ciambelli, M. D’Amore, V. Palma, S. Vaccaro, Catalytic oxidation of an amorphous carbon black. Combust. Flame 99, 413–421 (1994)

    Article  CAS  Google Scholar 

  19. J.P.A. Neeft, M. Makkee, J.A. Moulijn, Catalytic oxidation of carbon black—I. Activity of catalysts and classification of oxidation profiles. Fuel 77, 111–119 (1998)

    Article  CAS  Google Scholar 

  20. S. Quiles-Díaz, J. Giménez-Mañogil, A. García-García, Catalytic performance of CuO/Ce0.8Zr0.2O2 loaded onto SiC-DPF in NOx-assisted combustion of diesel soot. RSC Adv. 5, 17018–17029 (2015)

    Article  Google Scholar 

  21. J.M. Christensen, J.D. Grunwaldt, A.D. Jensen, Importance of the oxygen bond strength for catalytic activity in soot oxidation. Appl. Catal. B Environ. 188, 235–244 (2016)

    Article  CAS  Google Scholar 

  22. J. Liu, Z. Zhao, C.M. Xu, H. Wang, Study of the catalytic combustion of diesel soot over nanometric lanthanum-cobalt mixed oxide catalysts. React. Kinet. Catal. Lett. 87, 107–114 (2005)

    Article  Google Scholar 

  23. E. Aneggi, V. Rico-Perez, C. de Leitenburg, S. Maschio, L. Soler, J. Llorca, A. Trovarelli, Ceria-zirconia particles wrapped in a 2D carbon envelope: improved low-temperature oxygen transfer and oxidation activity. Angew. Chemie Int. Ed. 54, 14040–14043 (2015)

    Article  CAS  Google Scholar 

  24. E. Aneggi, J. Llorca, A. Trovarelli, M. Aouinea, P. Vernoux, In situ environmental HRTEM discloses low temperature carbon soot oxidation by ceria-zirconia at the nanoscale. Chem. Commun. 55, 3876–3878 (2019)

    Article  CAS  Google Scholar 

  25. S.B. Simonsen, S. Dahl, E. Johnson, S. Helveg, Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy. J. Catal. 255, 1–5 (2008)

    Article  CAS  Google Scholar 

  26. L. Soler, A. Casanovas, C. Escudero, V. Pérez-Dieste, E. Aneggi, A. Trovarelli, J. Llorca, Ambient pressure photoemission spectroscopy reveals the mechanism of carbon soot oxidation in ceria-based catalysts. ChemCatChem 8, 2748–2751 (2016)

    Article  CAS  Google Scholar 

  27. B. Bassou, N. Guilhaume, K. Lombaert, C. Mirodatos, D. Bianchi, Experimental microkinetic approach of the catalytic oxidation of diesel soot by ceria using temperature-programmed experiments. Part 1: impact and evolution of the ceria/soot contacts during soot oxidation. Energy Fuel 24, 4766–4780 (2010)

    Article  CAS  Google Scholar 

  28. B. Bassou, N. Guilhaume, K. Lombaert, C. Mirodatos, D. Bianchi, Experimental microkinetic approach of the catalytic oxidation of diesel soot by ceria using temperature-programmed experiments. Part 2: kinetic modeling of the impact of the ceria/soot contacts on the rate of oxidation. Energy Fuel 24, 4781–4792 (2010)

    Article  CAS  Google Scholar 

  29. M. Issa, C. Petit, A. Brillard, J.F. Brilhac, Oxidation of carbon by CeO2: effect of the contact between carbon and catalyst particles. Fuel 87, 740–750 (2008)

    Article  CAS  Google Scholar 

  30. E. Saab, E. Abi-Aad, M.N. Bokova, E.A. Zhilinskaya, A. Aboukaïs, EPR characterisation of carbon black in loose and tight contact with Al2O3 and CeO2 catalysts. Carbon 45, 561–567 (2007)

    Article  CAS  Google Scholar 

  31. M. Issa, C. Petit, H. Mahzoul, A. Aboukaïs, J.F. Brilhac, EPR and SEM characterizations of the contact between carbon black and cerium oxide. Top. Catal. 52, 2063–2069 (2009)

    Article  CAS  Google Scholar 

  32. P. Sudarsanam, B. Hillary, B. Mallesham, B.G. Rao, M.H. Amin, A. Nafady, A.M. Alsalme, B.M. Reddy, S.K. Bhargava, Designing CuOx nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials. Langmuir 32, 2208–2215 (2016)

    Article  CAS  Google Scholar 

  33. B. Cui, S. Yan, Y. Xia, K. Li, S. Li, D. Wang, Y. Ye, Y.Q. Liu, CuxCe1-xO2 nanoflakes with improved catalytic activity and thermal stability for diesel soot combustion. Appl. Catal. A Gen. 578, 20–29 (2019)

    Article  CAS  Google Scholar 

  34. P. Sudarsanam, B. Hillary, M.H. Amin, N. Rockstroh, U. Bentrup, A. Brückner, S.K. Bhargava, Heterostructured copper-ceria and iron-ceria nanorods: role of morphology, redox, and acid properties in catalytic diesel soot combustion. Langmuir 34, 2663–2673 (2018)

    Article  CAS  Google Scholar 

  35. A. Bueno-López, K. Krishna, M. Makkee, J.A. Moulijn, Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. J. Catal. 230, 237–248 (2005)

    Article  Google Scholar 

  36. C.B. Lim, H. Kusaba, H. Einaga, Y. Teraoka, Catalytic performance of supported precious metal catalysts for the combustion of diesel particulate matter. Catal. Today 175, 106–111 (2011)

    Article  CAS  Google Scholar 

  37. J.P.A. Neeft, M. Makkee, J.A. Moulijn, Metal oxides as catalysts for the oxidation of soot. Chem. Eng. J. Biochem. Eng. J. 64, 295–302 (1996)

    Article  CAS  Google Scholar 

  38. D. Gardini, J.M. Christensen, C.D. Damsgaard, A.D. Jensen, J.B. Wagner, Visualizing the mobility of silver during catalytic soot oxidation. Appl. Catal. B Environ. 183, 28–36 (2016)

    Article  CAS  Google Scholar 

  39. K. Mori, K. Watanabe, T. Sato, H. Yamashita, Environmental transmission electron microscopy study of diesel carbon soot combustion under simulated catalytic-reaction conditions. ChemPhysChem 16, 1347–1351 (2015)

    Article  CAS  Google Scholar 

  40. E. Aneggi, J. Llorca, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Soot combustion over silver-supported catalysts. Appl. Catal. B Environ. 91, 489–498 (2009)

    Article  CAS  Google Scholar 

  41. S. Liu, X. Wu, W. Liu, W. Chen, R. Ran, M. Li, D. Weng, Soot oxidation over CeO2 and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J. Catal. 337, 188–198 (2016)

    Article  CAS  Google Scholar 

  42. J.H. Lee, S.H. Lee, J.W. Choung, C.H. Kim, K.Y. Lee, Ag-incorporated macroporous CeO2 catalysts for soot oxidation: effects of Ag amount on the generation of active oxygen species. Appl. Catal. B Environ. 246, 356–366 (2019)

    Article  CAS  Google Scholar 

  43. L. Zeng, L. Cui, C. Wang, W. Guo, C. Gong, Ag-assisted CeO2 catalyst for soot oxidation. Front. Mater. Sci. 13, 288–295 (2019)

    Article  Google Scholar 

  44. X. Deng, M. Li, J. Zhang, X. Hu, J. Zheng, N. Zhang, B.H. Chen, Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation. Chem. Eng. J. 313, 544–555 (2017)

    Article  CAS  Google Scholar 

  45. G. Corro, A. Flores, F. Pacheco-Aguirre, U. Pal, F. Bañuelos, R. Araceli, A. Zehe, Biodiesel and fossil-fuel diesel soot oxidation activities of Ag/CeO2 catalyst. Fuel 250, 17–26 (2019)

    Article  CAS  Google Scholar 

  46. D. Weng, J. Li, X. Wu, F. Lin, Promotional effect of potassium on soot oxidation activity and SO2-poisoning resistance of Cu/CeO2 catalyst. Catal. Commun. 9, 1898–1901 (2008)

    Article  CAS  Google Scholar 

  47. A. Alinezhadchamazketi, A.A. Khodadadi, Y. Mortazavi, A. Nemati, Catalytic evaluation of promoted CeO2-ZrO2 by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation. J. Environ. Sci. 25, 2498–2506 (2013)

    Article  CAS  Google Scholar 

  48. L. Sui, Y. Wang, H. Kang, H. Dong, L. Dong, L. Yu, Effect of Cs-Ce-Zr catalysts/soot contact conditions on diesel soot oxidation. ACS Omega 2, 6984–6990 (2017)

    Article  CAS  Google Scholar 

  49. H. Shimokawa, Y. Kurihara, H. Kusaba, H. Einaga, Y. Teraoka, Comparison of catalytic performance of Ag- and K-based catalysts for diesel soot combustion. Catal. Today 185, 99–103 (2012)

    Article  CAS  Google Scholar 

  50. M. Piumetti, S. Bensaid, N. Russo, D. Fino, Investigations into nanostructured ceria-zirconia catalysts for soot combustion. Appl. Catal. B Environ. 180, 271–282 (2016)

    Article  CAS  Google Scholar 

  51. V. Rico-Pérez, E. Aneggi, A. Trovarelli, The effect of Sr addition in Cu- and Fe-modified CeO2 and ZrO2 soot combustion catalysts. Catalysts 7, 28 (2017)

    Article  Google Scholar 

  52. V. Rico-Pérez, E. Aneggi, A. Bueno-López, A. Trovarelli, Synergic effect of Cu/Ce0.5Pr0.5O2-δ and Ce0.5Pr0.5O2-δ in soot combustion. Appl. Catal. B Environ. 197, 95–104 (2016)

    Article  Google Scholar 

  53. S.J. Castillo Marcano, S. Bensaid, F.A. Deorsola, N. Russo, D. Fino, Multifunctional catalyst based on BaO/Pt/CeO2 for NO2-assisted soot abatement and NOx storage. Fuel 149, 78–84 (2015)

    Article  CAS  Google Scholar 

  54. Y. Gao, X. Wu, S. Liu, D. Weng, R. Ran, MnOx-CeO2 mixed oxides for diesel soot oxidation: a review. Catal. Surv. Jpn. 22, 230–240 (2018)

    Article  CAS  Google Scholar 

  55. D. Jampaiah, V.K. Velisoju, D. Devaiah, M. Singh, E.L.H. Mayes, V.E. Coyle, B.M. Reddy, V. Bansal, S.K. Bhargava, Flower-like Mn3O4/CeO2 microspheres as an efficient catalyst for diesel soot and CO oxidation: synergistic effects for enhanced catalytic performance. Appl. Surf. Sci. 473, 209–221 (2019)

    Article  CAS  Google Scholar 

  56. E. Sartoretti, C. Novara, F. Giorgis, M. Piumetti, S. Bensaid, N. Russo, D. Fino, In situ Raman analyses of the soot oxidation reaction over nanostructured ceria-based catalysts. Sci. Rep. 9, 3875 (2019)

    Article  Google Scholar 

  57. S. Wagloehner, S. Kureti, Study on the mechanism of the oxidation of soot on Fe2O3 catalyst. Appl. Catal. B Environ. 125, 158–165 (2012)

    Article  CAS  Google Scholar 

  58. Y. Teraoka, K. Nakano, S. Kagawa, W.F. Shangguan, Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides. Appl. Catal. B Environ. 5, L181–L185 (1995)

    Article  CAS  Google Scholar 

  59. A. Mishra, R. Prasad, Preparation and application of perovskite catalysts for diesel soot emissions control: an overview. Catal. Rev. 56, 57–81 (2014)

    Article  CAS  Google Scholar 

  60. S. Bensaid, G.A. Blengini, D. Fino, N. Russo, Diesel soot combustion with perovskite catalysts. Chem. Eng. Commun. 201, 1327–1339 (2014)

    Article  CAS  Google Scholar 

  61. A. Civera, M. Pavese, G. Saracco, V. Specchia, Combustion synthesis of perovskite-type catalysts for natural gas combustion. Catal. Today 83, 199–211 (2003)

    Article  CAS  Google Scholar 

  62. M. Haneda, A. Towata, Catalytic performance of supported Ag nano-particles prepared by liquid phase chemical reduction for soot oxidation. Catal. Today 242, 351–356 (2015)

    Article  CAS  Google Scholar 

  63. A. Serve, A. Boreave, B. Cartoixa, K. Pajot, P. Vernoux, Synergy between Ag nanoparticles and yttria-stabilized zirconia for soot oxidation. Appl. Catal. B Environ. 242, 140–149 (2019)

    Article  CAS  Google Scholar 

  64. E. Obeid, L. Lizarraga, M.N. Tsampas, A. Cordier, A. Boréave, M.C. Steil, G. Blanchard, K. Pajot, P. Vernoux, Continuously regenerating diesel particulate filters based on ionically conducting ceramics. J. Catal. 309, 87–96 (2014)

    Article  CAS  Google Scholar 

  65. E. Obeid, M.N. Tsampas, S. Jonet, A. Boréave, L. Burel, M.C. Steil, G. Blanchard, K. Pajot, P. Vernoux, Isothermal catalytic oxidation of diesel soot on yttria-stabilized zirconia. Solid State Ionics 262, 253–256 (2014)

    Article  CAS  Google Scholar 

  66. L. Castoldi, E. Aneggi, R. Matarrese, R. Bonzi, A. Trovarelli, L. Lietti, Simultaneous removal of soot and NOx over silver and ruthenium-based catalysts. Top. Catal. 60, 209–213 (2017)

    Article  CAS  Google Scholar 

  67. L. Dou, T. Fan, H. Zhang, A novel 3D oxide nanosheet array catalyst derived from hierarchical structured array-like CoMgAl-LDH/graphene nanohybrid for highly efficient NOx capture and catalytic soot combustion. Catal. Sci. Technol. 5, 5153–5167 (2015)

    Article  CAS  Google Scholar 

  68. P. Legutko, T. Jakubek, W. Kaspera, P. Stelmachowski, Z. Sojka, A. Kotarba, Strong enhancement of desoot activity of transition metal oxides by alkali doping: additive effects of potassium and nitric oxide. Top. Catal. 60, 162–170 (2017)

    Article  CAS  Google Scholar 

  69. G. Mul, J.P.A. Neeft, F. Kapteijn, M. Makkee, J.A. Moulijn, Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst. Appl. Catal. B Environ. 6, 339–352 (1995)

    Article  CAS  Google Scholar 

  70. A. Carrascull, I.D. Lick, E.N. Ponzi, M.I. Ponzi, Catalytic combustion of soot with a O2/NO mixture. KNO3/ZrO2 catalysts. Catal. Commun. 4, 124–128 (2003)

    Article  CAS  Google Scholar 

  71. L. Sui, L. Yu, Y. Zhang, Catalytic combustion of diesel soot on Co-Sr-K catalysts. Energy Fuel 21, 1420–1424 (2007)

    Article  CAS  Google Scholar 

  72. H. An, P.J. McGinn, Catalytic behavior of potassium containing compounds for diesel soot combustion. Appl. Catal. B Environ. 62, 46–56 (2006)

    Article  CAS  Google Scholar 

  73. D. Courcot, C. Pruvost, E.A. Zhilinskaya, A. Aboukaïs, Potential of supported copper and potassium oxide catalysts in the combustion of carbonaceous particles. Kinet. Catal. 45, 580–588 (2004)

    Article  CAS  Google Scholar 

  74. H. Laversin, D. Courcot, E.A. Zhilinskaya, R. Cousin, A. Aboukaïs, Study of active species of Cu-K/ZrO2 catalysts involved in the oxidation of soot. J. Catal. 241, 456–464 (2006)

    Article  CAS  Google Scholar 

  75. N.F. Galdeano, A.L. Carrascull, M.I. Ponzi, I.D. Lick, E.N. Ponzi, Catalytic combustion of particulate matter: catalysts of alkaline nitrates supported on hydrous zirconium. Thermochim. Acta 421, 117–121 (2004)

    Article  CAS  Google Scholar 

  76. W. Kaspera, P. Indyka, Z. Sojka, A. Kotarba, Bridging the gap between tight and loose contacts for soot oxidation by vanadium doping of cryptomelane nanorods catalyst using NO2 as an oxygen carrier. Catal. Sci. Technol. 8, 3183–3192 (2018)

    Article  CAS  Google Scholar 

  77. T. Jakubek, K. Ralphs, A. Kotarba, H. Manyar, Nanostructured potassium-manganese oxides decorated with Pd nanoparticles as efficient catalysts for low-temperature soot oxidation. Catal. Lett. 149, 100–106 (2019)

    Article  CAS  Google Scholar 

  78. H. Zhang, S. Yuan, J.L. Wang, M. Gong, Y. Chen, Effects of contact model and NOx on soot oxidation activity over Pt/MnOx-CeO2 and the reaction mechanisms. Chem. Eng. J. 327, 1066–1076 (2017)

    Article  CAS  Google Scholar 

  79. Q. Shen, G. Lu, C. Du, Y. Guo, Y. Wang, Y. Guo, X. Gong, Role and reduction of NOx in the catalytic combustion of soot over iron-ceria mixed oxide catalyst. Chem. Eng. J. 218, 164–172 (2013)

    Article  CAS  Google Scholar 

  80. J.M. Christensen, J.D. Grunwaldt, A.D. Jensen, Effect of NO2 and water on the catalytic oxidation of soot. Appl. Catal. B Environ. 205, 182–188 (2017)

    Article  CAS  Google Scholar 

  81. N. Zouaoui, M. Issa, D. Kehrli, M. Jeguirim, CeO2 catalytic activity for soot oxidation under NO/O2 in loose and tight contact. Catal. Today 189, 65–69 (2012)

    Article  CAS  Google Scholar 

  82. P. Miceli, S. Bensaid, N. Russo, D. Fino, CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact. Nanoscale Res. Lett. 9, 254 (2014)

    Article  Google Scholar 

  83. E. Aneggi, C. de Leitenburg, A. Trovarelli, On the role of lattice/surface oxygen in ceria-zirconia catalysts for diesel soot combustion. Catal. Today 181, 108–115 (2012)

    Article  CAS  Google Scholar 

  84. E. Aneggi, C. de Leitenburg, J. Llorca, A. Trovarelli, Higher activity of diesel soot oxidation over polycrystalline ceria and ceria-zirconia solid solutions from more reactive surface planes. Catal. Today 197, 119–126 (2012)

    Article  CAS  Google Scholar 

  85. P.A. Kumar, M.D. Tanwar, S. Bensaid, N. Russo, D. Fino, Soot combustion improvement in diesel particulate filters catalyzed with ceria nanofibers. Chem. Eng. J. 207–208, 258–266 (2012)

    Article  Google Scholar 

  86. S. Bensaid, N. Russo, D. Fino, CeO2 catalysts with fibrous morphology for soot oxidation: the importance of the soot-catalyst contact conditions. Catal. Today 216, 57–63 (2013)

    Article  CAS  Google Scholar 

  87. P. Miceli, S. Bensaid, N. Russo, D. Fino, Effect of the morphological and surface properties of CeO2-based catalysts on the soot oxidation activity. Chem. Eng. J. 278, 190–198 (2015)

    Article  CAS  Google Scholar 

  88. W. Zhang, X. Niu, L. Chen, F. Yuan, Y. Zhu, Soot combustion over nanostructured ceria with different morphologies. Sci. Rep. 6, 29062 (2016)

    Article  CAS  Google Scholar 

  89. M. Piumetti, S. Bensaid, N. Russo, D. Fino, Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. Appl. Catal. B Environ. 165, 742–751 (2015)

    Article  CAS  Google Scholar 

  90. E. Aneggi, D. Wiater, C. de Leitenburg, J. Llorca, A. Trovarelli, Shape-dependent activity of ceria in soot combustion. ACS Catal. 4, 172–181 (2014)

    Article  CAS  Google Scholar 

  91. Y. Cheng, J. Liu, Z. Zhao, Y. Wei, Y. Song, C. Xu, The simultaneous purification of PM and NOx in diesel engine exhausts over a single 3DOM Ce0.9-xFe0.1ZrxO2 catalyst. Environ. Sci. Nano 4, 1168–1177 (2017)

    Article  CAS  Google Scholar 

  92. K. Hinot, H. Burtscher, A.P. Weber, G. Kasper, The effect of the contact between platinum and soot particles on the catalytic oxidation of soot deposits on a diesel particle filter. Appl. Catal. B Environ. 71, 271–278 (2007)

    Article  CAS  Google Scholar 

  93. D. Fino, N. Russo, E. Cauda, G. Saracco, V. Specchia, La-Li-Cr perovskite catalysts for diesel particulate combustion. Catal. Today 114, 31–39 (2006)

    Article  CAS  Google Scholar 

  94. N. Russo, D. Fino, G. Saracco, V. Specchia, Promotion effect of Au on perovskite catalysts for the regeneration of diesel particulate filters. Catal. Today 137, 306–311 (2008)

    Article  CAS  Google Scholar 

  95. J. Caroca, G. Villata, D. Fino, N. Russo, Comparison of different diesel particulate filters. Top. Catal. 52, 2076–2082 (2009)

    Article  CAS  Google Scholar 

  96. L. Tang, Z. Zhao, K. Li, X. Yu, Y. Wei, J. Liu, Y. Peng, Y. Li, Y. Chen, Highly active monolith catalysts of LaKCoO3 perovskite-type complex oxide on alumina-washcoated diesel particulate filter and the catalytic performances for the combustion of soot. Catal. Today 339, 159–173 (2020)

    Article  CAS  Google Scholar 

  97. Q. Zhou, K. Zhong, W. Fu, Q. Huang, Z. Wang, B. Nie, Nanostructured platinum catalyst coating on diesel particulate filter with a low-cost electroless deposition approach. Chem. Eng. J. 270, 320–326 (2015)

    Article  CAS  Google Scholar 

  98. V. Di Sarli, G. Landi, L. Lisi, A. Di Benedetto, Ceria-coated diesel particulate filters for continuous regeneration. AICHE J. 63, 3442–3449 (2017)

    Article  Google Scholar 

  99. V. Di Sarli, A. Di Benedetto, Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter. Chem. Eng. Sci. 137, 69–78 (2015)

    Article  Google Scholar 

  100. V. Di Sarli, A. Di Benedetto, Operating map for regeneration of a catalytic diesel particulate filter. Ind. Eng. Chem. Res. 55, 11052–11061 (2016)

    Article  Google Scholar 

  101. V. Di Sarli, A. Di Benedetto, Combined effects of soot load and catalyst activity on the regeneration dynamics of catalytic diesel particulate filters. AICHE J. 64, 1714–1722 (2018)

    Article  Google Scholar 

  102. V. Di Sarli, A. Di Benedetto, Using CFD simulation as a tool to identify optimal operating conditions for regeneration of a catalytic diesel particulate filter. Appl. Sci. (Basel) 9, 3453 (2019)

    Article  Google Scholar 

  103. S. Wagloehner, M. Nitzer-Noski, S. Kureti, Oxidation of soot on manganese oxide catalysts. Chem. Eng. J. 259, 492–504 (2015)

    Article  CAS  Google Scholar 

  104. E. Bruneel, J. Van Brabant, M.T. Le, I. Van Driessche, Deposition of a Cu/Mo/Ce catalyst for diesel soot oxidation on a sintered metal fiber filter with a CeO2 anti corrosion coating. Catal. Commun. 25, 111–117 (2012)

    Article  CAS  Google Scholar 

  105. S.A. Leonardi, F.E. Tuler, E.M. Gaigneaux, D.P. Debecker, E.E. Miró, V.G. Milt, Novel ceramic paper structures for diesel exhaust purification. Environ. Sci. Pollut. Res. 25, 35276–35286 (2018)

    Article  CAS  Google Scholar 

  106. N.A. Sacco, E.D. Banús, J.P. Bortolozzi, V.G. Milt, E.E. Miró, Ultrasound-assisted deposition of Co-CeO2 onto ceramic microfibers to conform catalytic papers: their application in engine exhaust treatment. ACS Omega 3, 18334–18342 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Di Sarli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Landi, G., Di Sarli, V., Di Benedetto, A., Lisi, L. (2021). The Issue of Solid-Solid Contact in Catalytic Soot Oxidation and the Benefits of Catalyst Nanostructuring to Regeneration of Catalytic Diesel Particulate Filters. In: Piumetti, M., Bensaid, S. (eds) Nanostructured Catalysts for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-58934-9_6

Download citation

Publish with us

Policies and ethics