Skip to main content

Nanostructured Bimetallic Pd-based Catalysts for the Valorization of Lignocellulosic Biomasses

  • Chapter
  • First Online:
Nanostructured Catalysts for Environmental Applications

Abstract

This chapter is focused on the sustainable valorization of lignin and its derived molecules, through the application of the transfer hydrogenolysis technology, by using nanostructured bimetallic Pd-based catalysts, in order to achieve high added-value products. In particular, nanostructured bimetallic co-precipitated Pd-based catalysts (Pd-M systems), such as Pd/Fe3O4, Pd/Co and Pd/Ni, were used and their textural and structural properties have been deeply elucidated through several characterization techniques (XRD, TEM, SEM, H2-TPR, XPS and EXAFS) in order to highlight the key factors that influence the peculiar catalytic activity in the reductive upgrading of lignin-derived aromatic ethers. Hydrogenolysis and transfer hydrogenolysis processes were focused on three model molecules of lignin: Benzyl Phenyl Ether (BPE), Phenethyl Phenyl Ether (PPE) and Diphenyl Ether (DPE) that mimic typical C-O lignin linkages, such as α-O-4, β-O-4 and 4-O-5 bonds. A comparison between the performance of bimetallic Pd-M catalysts and that of the commercial Pd/C is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.O. Tuck, E. Pérez, I.T. Horváth, R.A. Sheldon, M. Poliakoff, Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012)

    Article  CAS  Google Scholar 

  2. R.A. Sheldon, Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 16, 950–963 (2014)

    Article  CAS  Google Scholar 

  3. F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015)

    Article  CAS  Google Scholar 

  4. Q. Jin, L. Yang, N. Poe, H. Huang, Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Sci. Technol. 74, 119–131 (2018)

    Article  CAS  Google Scholar 

  5. A.M. Ruppert, K. Weinberg, R. Palkovits, Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. 51, 2564–2601 (2012)

    Article  CAS  Google Scholar 

  6. A. Fasolini, R. Cucciniello, E. Paone, F. Mauriello, T. Tabanelli, A short overview on the hydrogen production via aqueous phase reforming (APR) of cellulose, C6-C5 sugars and polyols. Catalysts 9(11), 917 (2019)

    Article  CAS  Google Scholar 

  7. C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588–5617 (2011)

    Article  CAS  Google Scholar 

  8. C. Xu, E. Paone, D. Rodríguez-Padròn, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 49, 4273–4306 (2020)

    Article  CAS  Google Scholar 

  9. H. Chen, Chemical composition and structure of natural lignocellulose, in Biotechnology of Lignocellulose: Theory and Practice, (Springer, Cham, 2014)

    Chapter  Google Scholar 

  10. D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)

    Article  CAS  Google Scholar 

  11. C. Xu, R.A.D. Arancon, J. Labidi, R. Luque, Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem. Soc. Rev. 43, 7485–7500 (2014)

    Article  CAS  Google Scholar 

  12. M. Besson, P. Gallezot, C. Pinel, Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 114, 1827–1870 (2014)

    Article  CAS  Google Scholar 

  13. A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)

    Article  CAS  Google Scholar 

  14. J.B. Binder, R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979–1985 (2009)

    Article  CAS  Google Scholar 

  15. P.J. Deuss, K. Barta, From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord. Chem. Rev. 306, 510–532 (2016)

    Article  CAS  Google Scholar 

  16. M. Zaheer, R. Kempe, Catalytic hydrogenolysis of aryl ethers: a key step in lignin valorization to valuable chemicals. ACS Catal. 5, 1675–1684 (2015)

    Article  CAS  Google Scholar 

  17. J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)

    Article  CAS  Google Scholar 

  18. M.V. Galkin, J.S.M. Samec, Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1–16 (2016)

    Article  Google Scholar 

  19. C. Espro, B. Gumina, T. Szumelda, E. Paone, F. Mauriello, Catalytic transfer hydrogenolysis as an effective tool for the reductive upgrading of cellulose, hemicellulose, lignin and their derived platform molecules. Catalysts 8(8), 313 (2018)

    Article  Google Scholar 

  20. E. Paone, T. Tabanelli, F. Mauriello, The rise of lignin biorefinery. Curr. Opin. Green Sustain. Chem. 24, 1–6 (2020)

    Article  Google Scholar 

  21. T. Tabanelli, E. Paone, P.B. Vàsquez, R. Pietropaolo, F. Cavani, F. Mauriello, Transfer hydrogenation of methyl and ethyl levulinate promoted by a ZrO2 catalyst: a comparison of batch vs continuous gas-flow conditions. ACS Sustain. Chem. Eng. 7, 9937–9947 (2019)

    Article  CAS  Google Scholar 

  22. M. Grilc, B. Likozar, J. Levec, Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts. Appl. Catal. B Environ. 150-151, 275–287 (2014)

    Article  CAS  Google Scholar 

  23. M. Grilc, B. Likozar, J. Levec, Simultaneous liquefaction and hydrodeoxygenation of lignocellulosic biomass over NiMo/Al2O3, Pd/Al2O3, and zeolite Y catalysts in hydrogen donor solvents. ChemCatChem 8, 180–191 (2015)

    Article  Google Scholar 

  24. Y. Zhang, H. Cao, J. Zhang, B. Xia, Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization. Solid State Ionics 177, 3303–3307 (2006)

    Article  CAS  Google Scholar 

  25. T.H. Cho, Y. Shiosaki, H. Noguchi, Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. J. Power Sources 159, 1322–1327 (2006)

    Article  CAS  Google Scholar 

  26. C. Espro, B. Gumina, E. Paone, F. Mauriello, Upgrading lignocellulosic biomasses: hydrogenolysis of platform derived molecules promoted by heterogeneous Pd-Fe catalysts. Catalysts 7, 78 (2017)

    Article  Google Scholar 

  27. F. Mauriello, H. Ariga, M.G. Musolino, R. Pietropaolo, S. Takakusagi, K. Asakura, Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Appl. Catal. B Environ. 166–167, 121–131 (2015)

    Article  Google Scholar 

  28. F. Liao, T.W.B. Lo, S.C.E. Tsang, Recent developments in palladium-based bimetallic catalysts. ChemCatChem 7, 1998–2014 (2015)

    Article  CAS  Google Scholar 

  29. J. Liu, B. Sun, J. Hu, Y. Pei, H. Li, M. Qiao, Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: metal–support interaction and excellent intrinsic activity. J. Catal. 274, 287–295 (2010)

    Article  CAS  Google Scholar 

  30. M.G. Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo, Glycerol hydrogenolysis promoted by supported Palladium catalysts. ChemSusChem 4, 1143–1150 (2011)

    Article  CAS  Google Scholar 

  31. L.S.F. Feio, C.E. Hori, L.V. Mattos, D. Zanchet, F.B. Noronha, J.M.C. Bueno, Partial oxidation and autothermal reforming of methane on Pd/CeO2–Al2O3 catalysts. Appl. Catal. A Gen. 348, 183–192 (2008)

    Article  CAS  Google Scholar 

  32. G. Neri, G. Rizzo, L. De Luca, A. Donato, M.G. Musolino, R. Pietropaolo, Supported Pd catalysts for the hydrogenation of campholenic aldehyde: influence of support and preparation method. Appl. Catal. A Gen. 356, 113–120 (2009)

    Article  CAS  Google Scholar 

  33. J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A 80, 333–341 (2007)

    Article  Google Scholar 

  34. H. Itoh, T. Sugimoto, Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interface Sci. 265, 283–295 (2003)

    Article  CAS  Google Scholar 

  35. W. Voit, D.K. Kim, W. Zapka, M. Muhammed, K.V. Rao, Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. Mater. Res. Soc. 676, 781–786 (2001)

    Article  Google Scholar 

  36. International Center for Diffraction Data, Powder Diffraction Database. Pennsylvania, PA (1997).

    Google Scholar 

  37. B.A. Sexton, A.E. Hughes, T.W. Turney, An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts. J. Catal. 97, 390–406 (1986)

    Article  CAS  Google Scholar 

  38. T. Jiang, Q. Huai, T. Geng, W. Ying, T. Xiao, F. Cao, Catalytic performance of Pd-Ni bimetallic catalyst for glycerol hydrogenolysis. Biomass Bioenergy 78, 71–79 (2015)

    Article  CAS  Google Scholar 

  39. M.G. Musolino, C. Busacca, F. Mauriello, R. Pietropaolo, Aliphatic carbonyl reduction promoted by palladium catalysts under mild conditions. Appl. Catal. A Gen. 379, 77–86 (2010)

    Article  CAS  Google Scholar 

  40. D. Li, L. Zhang, H. Chen, L.-X. Ding, S. Wanga, H. Wang, Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chem. Commun. 51, 16045–16048 (2015)

    Article  CAS  Google Scholar 

  41. S. Nandi, P. Patel, N.H. Khan, A.V. Biradar, R.I. Kureshy, Nitrogen-rich graphitic-carbon stabilized cobalt nanoparticles for chemoselective hydrogenation of nitroarenes at milder conditions. Inorgan. Chem. Front. 5, 806–813 (2018)

    Article  CAS  Google Scholar 

  42. Y. Yao, L.L. Gu, W. Jiang, H.C. Sun, Q. Su, J. Zhao, W.J. Ji, C.T. Au, Enhanced low temperature CO oxidation by pretreatment: specialty of the Au–Co3O4 oxide interfacial structures. Cat. Sci. Technol. 6, 2349–2360 (2016)

    Article  CAS  Google Scholar 

  43. D. Scholz, C. Aellig, I. Hermans, Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl) furfural. ChemSusChem 7, 268–275 (2014)

    Article  CAS  Google Scholar 

  44. A.J.R. Hensley, Y. Hong, R. Zhang, H. Zhang, J. Sun, Y. Wang, J.S. McEwen, Enhanced Fe2O3 reducibility via surface modification with pd: characterizing the synergy within Pd/Fe catalysts for hydrodeoxygenation reactions. ACS Catal. 4, 3381–3392 (2014)

    Article  CAS  Google Scholar 

  45. Q. Liu, L.-C. Wang, M. Chen, Y. Cao, H.-Y. He, K.-N. Fan, Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J. Catal. 263, 104–113 (2009)

    Article  CAS  Google Scholar 

  46. F.B. Noronha, M. Schmal, C. Nicot, B. Moraweck, R. Fréty, Characterization of graphite-supported palladium–cobalt catalysts by temperature-programmed reduction and magnetic measurements. J. Catal. 168, 42–50 (1997)

    Article  CAS  Google Scholar 

  47. M.L. Cubeiro, J.L.G. Fierro, Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts. J. Catal. 179, 150–162 (1998)

    Article  CAS  Google Scholar 

  48. X. Liu, Y. Zuo, L.P. Li, X.S. Huang, G.S. Li, Heterostructure NiO/Ce−xNixO2: synthesis and synergistic effect of simultaneous surface modification and internal doping for superior catalytic performance. RSC Adv. 4, 6397–6406 (2014)

    Article  CAS  Google Scholar 

  49. C. Song, J. Zhao, H. Li, S. Luo, Y. Tang, D. Wang, Design, controlled synthesis, and properties of 2D CeO2/NiO heterostructure assemblies. Cryst. Eng. Comm 19, 7339–7346 (2017)

    Article  CAS  Google Scholar 

  50. Y.-S. Fenga, X.-Y. Lina, J. Hao, H.-J. Xu, Pd–Co bimetallic nanoparticles supported on graphene as a highly active catalyst for Suzuki–Miyaura and Sonogashira cross-coupling reactions. Tetrahedron 70, 5249–5253 (2014)

    Article  Google Scholar 

  51. C.D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Minneapolis, MN, 1979)

    Google Scholar 

  52. B. Mierzwa, Z. Kaszkur, B. Moraweck, J. Pielaszek, In situ EXAFS study of the alloy catalyst Pd-Co (50%/50%)/SiO2. J. Alloys Compd. 286, 93–97 (1999)

    Article  CAS  Google Scholar 

  53. M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 41, 324–332 (2009)

    Article  CAS  Google Scholar 

  54. N. Seshu Babu, N. Lingaiah, P.S. Sai Prasad, Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene. Appl. Catal. B Environ. 111−112, 309–316 (2012)

    Article  Google Scholar 

  55. L. Chen, H. Guo, T. Fujita, A. Hirata, W. Zhang, A. Inoue, M. Chen, Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions. Adv. Funct. Mater. 21, 4364–4370 (2011)

    Article  CAS  Google Scholar 

  56. F. Liao, T.W.B. Lo, J. Qu, A. Kroner, A. Dent, S.C.E. Tsang, Tunability of catalytic properties of Pd-based catalysts by rational control of strong metal and support interaction (SMSI) for selective hydrogenolyic C–C and C–O bond cleavage of ethylene glycol units in biomass molecules. Cat. Sci. Technol. 5, 3491–3495 (2015)

    Article  CAS  Google Scholar 

  57. L. Nguyen, S. Zhang, L. Wang, Y. Li, H. Yoshida, A. Patlolla, A.I. Frenkel, S. Takeda, F.F. Tao, Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS Catal. 6, 840–850 (2016)

    Article  CAS  Google Scholar 

  58. J.K. Kim, J.K. Lee, K.H. Kang, J.W. Lee, I.K. Song, Catalytic decomposition of phenethyl phenyl ether to aromatics over Pd–Fe bimetallic catalysts supported on ordered mesoporous carbon. J. Mol. Catal. A Chem. 410, 184–192 (2015)

    Article  CAS  Google Scholar 

  59. J.K. Kim, J.K. Lee, K.H. Kang, J.W. Lee, I.K. Song, Selective cleavage of CO bond in benzyl phenyl ether to aromatics over Pd–Fe bimetallic catalyst supported on ordered mesoporous carbon. Appl. Catal. A Gen. 498, 142–149 (2015)

    Article  CAS  Google Scholar 

  60. B. Gumina, F. Mauriello, R. Pietropaolo, S. Galvagno, C. Espro, Hydrogenolysis of sorbitol into valuable C3-C2 alcohols at low H2 pressure promoted by the heterogeneous Pd/Fe3O4 catalyst. Mol. Catal. 446, 152–160 (2018)

    Article  CAS  Google Scholar 

  61. J. Sun, A.M. Karim, H. Zhang, L. Kovarik, X.S. Li, A.J. Hensley, J.-S. McEwen, Y. Wang, Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J. Catal. 306, 47–57 (2013)

    Article  CAS  Google Scholar 

  62. Y. Hong, H. Zhang, J. Sun, K.M. Ayman, A.J.R. Hensley, M. Gu, M.H. Engelhard, J.-S. McEwen, Y. Wang, Synergistic catalysis between Pd and Fe in gas phase dydrodeoxygenation of m-cresol. ACS Catal. 4, 3335–3345 (2014)

    Article  CAS  Google Scholar 

  63. A.J.R. Hensley, R. Zhang, Y. Wang, J.-S. McEwen, Tailoring the adsorption of benzene on PdFe surfaces: a density functional theory study. J. Phys. Chem. C 117, 24317–24328 (2013)

    Article  CAS  Google Scholar 

  64. N. Mahata, V. Vishwanathan, Gas phase hydrogenation of phenol over supported palladium catalysts. Catal. Today 49, 65–69 (1999)

    Article  CAS  Google Scholar 

  65. F. Mauriello, A. Vinci, C. Espro, B. Gumina, M.G. Musolino, R. Pietropaolo, Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst. Cat. Sci. Technol. 5, 4466–4473 (2015)

    Article  CAS  Google Scholar 

  66. D. Cozzula, A. Vinci, F. Mauriello, R. Pietropaolo, T.E. Müller, Directing the cleavage of ester C−O bonds by controlling the hydrogen availability on the surface of coprecipitated Pd/Fe3O4. ChemCatChem 8, 1515–1522 (2016)

    Article  CAS  Google Scholar 

  67. H. Bernas, A. Taskinen, J. Wärnå, D.Y. Murzin, Describing the inverse dependence of hydrogen pressure by multi-site adsorption of the reactant: hydrogenolysis of hydroxymatairesinol on a Pd/C catalyst. J. Mol. Catal. A Chem. 306, 33–39 (2009)

    Article  CAS  Google Scholar 

  68. G.W. Huber, J.W. Shabaker, S.T. Evans, J.A. Dumesic, Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl. Catal. B Environ. 62, 226–235 (2006)

    Article  CAS  Google Scholar 

  69. P. Panagiotopoulou, N. Martin, D.G. Vlachos, Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. J. Mol. Catal. A Chem. 392, 223–228 (2014)

    Article  CAS  Google Scholar 

  70. N.S.M. Bertero, A.F. Trasarti, C.R. Apesteguía, A.J. Marchi, Solvent effect in the liquid-phase hydrogenation of acetophenone over Ni/SiO2: a comprehensive study of the phenomenon. Appl. Catal. A Gen. 394, 228–238 (2011)

    Article  CAS  Google Scholar 

  71. J. He, C. Zhao, J.A. Lercher, Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 134, 20768–20775 (2012)

    Article  CAS  Google Scholar 

  72. Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  73. Y.S. Choi, R. Singh, J. Zhang, G. Balasubramanian, M.R. Sturgeon, R. Katahira, G. Chupka, G.T. Beckham, B.H. Shanks, Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds. Green Chem. 18, 1762–1773 (2016)

    Article  CAS  Google Scholar 

  74. F. Mauriello, H. Ariga-Miwa, E. Paone, R. Pietropaolo, S. Takakusagi, K. Asakura, Transfer hydrogenolysis of aromatic ethers promoted by the bimetallic Pd/Co catalyst. Catal. Today (2019)

    Google Scholar 

  75. E. Paone, C. Espro, R. Pietropaolo, F. Mauriello, Selective arene production from transfer hydrogenolysis of benzyl phenyl ether promoted by a co-precipitated Pd/Fe3O4 catalyst. Cat. Sci. Technol. 6, 7937–7941 (2016)

    Article  CAS  Google Scholar 

  76. E. Dorrestijn, L.J.J. Laarhoven, I.W.C.E. Arends, P. Mulder, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 54, 153–192 (2000)

    Article  CAS  Google Scholar 

  77. R. Parthasarathi, R.A. Romero, A. Redondo, S. Gnanakaran, Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2, 2660–2666 (2011)

    Article  CAS  Google Scholar 

  78. S. De, J. Zhang, R. Luque, N. Yan, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 9, 3314–3347 (2016)

    Article  CAS  Google Scholar 

  79. A.G. Sergeev, J.F. Hartwig, Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332, 439–443 (2011)

    Article  CAS  Google Scholar 

  80. A.G. Sergeev, J.D. Webb, J.F. Hartwig, A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J. Am. Chem. Soc. 134, 20226–20229 (2012)

    Article  CAS  Google Scholar 

  81. J. He, L. Lu, C. Zhao, D. Mei, J.A. Lercher, Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases. J. Catal. 311, 41–51 (2014)

    Article  CAS  Google Scholar 

  82. J. He, L. Lu, C. Zhao, D. Mei, J.A. Lercher, Mechanisms of selective cleavage of C–O bonds in di-aryl ethers in aqueous phase. J. Catal. 309, 280–290 (2014)

    Article  CAS  Google Scholar 

  83. Q. Song, F. Wang, J. Xu, Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem. Commun. 48, 7019–7021 (2012)

    Article  CAS  Google Scholar 

  84. J. Zhang, H. Asakura, J. van Rijn, J. Yang, P. Duchesne, B. Zhang, X. Chen, P. Zhang, M. Saeys, N. Yan, Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem. 16, 2432–2437 (2014)

    Article  CAS  Google Scholar 

  85. J. Zhang, J. Teo, X. Chen, H. Asakura, T. Tanaka, K. Teramura, N. Yan, A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal. 4, 1574–1583 (2014)

    Article  CAS  Google Scholar 

  86. X. Cui, H. Yuan, K. Junge, C. Topf, M. Beller, F. Shi, A stable and practical nickel catalyst for the hydrogenolysis of C–O bonds. Green Chem. 19, 305–310 (2017)

    Article  CAS  Google Scholar 

  87. M.M. Ambursa, P. Sudarsanam, L. HweiVoon, S.B.A. Hamid, S.K. Bhargava, Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels. Fuel Process. Technol. 162, 87–97 (2017)

    Article  CAS  Google Scholar 

  88. J.-W. Zhang, Y. Cai, G.-P. Lu, C. Cai, Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd-Ni bimetallic nanoparticles supported on ZrO2. Green Chem. 18, 6229–6235 (2016)

    Article  CAS  Google Scholar 

  89. K.-K. Sun, G.-P. Lu, J.-W. Zhang, C. Cai, Selective hydrogenolysis of C-O bonds in lignin model compounds by Pd-Ni bimetallic nanoparticles in ionic liquids. Dalton Trans. 46, 11884–11889 (2017)

    Article  CAS  Google Scholar 

  90. J.-W. Zhang, G.-P. Lu, C. Cai, Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd-Ni BMNPs. Green Chem. 19, 4538–4543 (2017)

    Article  CAS  Google Scholar 

  91. X. Wang, R. Rinaldi, Exploiting H-transfer reactions with RANEY®Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions. Energy Environ. Sci. 5, 8244–8260 (2012)

    Article  CAS  Google Scholar 

  92. X. Wang, R. Rinaldi, A route for lignin and bio-oil conversion: dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew. Chem. Int. Ed. 52, 11499–11503 (2013)

    Article  CAS  Google Scholar 

  93. X. Wang, R. Rinaldi, Solvent effects on the hydrogenolysis of diphenyl ether with raney nickel and their implications for the conversion of lignin. ChemSusChem 5, 1455–1466 (2012)

    Article  CAS  Google Scholar 

  94. X. Wang, R. Rinaldi, Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catal. Today 269, 48–55 (2016)

    Article  CAS  Google Scholar 

  95. F. Mauriello, E. Paone, R. Pietropaolo, A.M. Balu, R. Luque, Catalytic transfer hydrogenolysis of lignin-derived aromatic ethers promoted by bimetallic Pd/Ni systems. ACS Sustain. Chem. Eng. 6, 9269–9276 (2018)

    Article  CAS  Google Scholar 

  96. C.M. Friend, E.L. Muetterties, Coordination chemistry of metal surfaces. 3. Benzene and toluene interactions with nickel surfaces. J. Am. Chem. Soc. 103, 173–779 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Paone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paone, E., Mauriello, F. (2021). Nanostructured Bimetallic Pd-based Catalysts for the Valorization of Lignocellulosic Biomasses. In: Piumetti, M., Bensaid, S. (eds) Nanostructured Catalysts for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-58934-9_5

Download citation

Publish with us

Policies and ethics