Skip to main content

Carbon Nanomaterials for Air and Water Remediation

  • Chapter
  • First Online:
Nanostructured Catalysts for Environmental Applications

Abstract

Carbon nanomaterials have demonstrated their potential as adsorbents, self-catalysts, and catalyst supports, to effectively remove pollutants from air and water. These materials possess unique properties, such as inertness, stability in acidic and basic media, and mainly the ability to tune their porosity and surface chemistry. Thus, the hydrophobic nature of carbons allows the interaction with nonpolar pollutants, but the creation of heteroatom and chemical functionalities of the carbon surface improves their affinity to polar pollutants. Furthermore, thermal/activation methods are applied to tailor the porosity and surface area. This book chapter provides an overview on the properties and performance of carbon nanomaterials for air and water remediation. A special attention is given to the removal of typical pollutants from air (e.g., CO2, NOx, SOx, and volatile organic compounds). The use of nanostructured carbons, alone or combined with metal oxides, is also reviewed for water remediation using advanced oxidation processes (AOPs) with special emphasis on photocatalysis, although other AOPs such as ozonation, catalytic wet air or peroxide oxidation, and Fenton-based processes over mostly graphene-based materials are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 14 March 2021

    This book was inadvertently published with an incorrect reference [135] in Chapter 12. This has now been updated as follows.

References

  1. M.-Y. Tai, C.-C. Chao, S.-W. Hu, Pollution, health and economic growth. North Am. J. Econom. Finance 32, 155–161 (2015)

    Article  Google Scholar 

  2. P. Das, R. Horton, Pollution, health, and the planet: time for decisive action. Lancet 391(10119), 407–408 (2018)

    Article  Google Scholar 

  3. J. Huang, X. Pan, X. Guo, G. Li, Impacts of air pollution wave on years of life lost: a crucial way to communicate the health risks of air pollution to the public. Environ. Int. 113, 42–49 (2018)

    Article  Google Scholar 

  4. J. Christodoulakis, C.A. Varotsos, A.P. Cracknell, G.A. Kouremadas, The deterioration of materials as a result of air pollution as derived from satellite and ground based observations. Atmos. Environ. 185, 91–99 (2018)

    Article  CAS  Google Scholar 

  5. M.R. Miller, Oxidative stress and the cardiovascular effects of air pollution. Free Radic. Biol. Med. (2020)

    Google Scholar 

  6. A. Oudin, Short review: air pollution, noise and lack of greenness as risk factors for Alzheimer’s disease-epidemiologic and experimental evidence. Neurochem. Int. 134, 104646 (2020)

    Article  CAS  Google Scholar 

  7. J.P. Vareda, A.J.M. Valente, L. Durães, Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J. Environ. Manag. 246, 101–118 (2019)

    Article  CAS  Google Scholar 

  8. A.E.V. Evans, J. Mateo-Sagasta, M. Qadir, E. Boelee, A. Ippolito, Agricultural water pollution: key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 36, 20–27 (2019)

    Article  Google Scholar 

  9. A. Müller, H. Österlund, J. Marsalek, M. Viklander, The pollution conveyed by urban runoff: a review of sources. Sci. Total Environ. 709, 136125 (2020)

    Article  Google Scholar 

  10. D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu, Q. Wei, D. Wei, A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches. J. Hazard. Mater. 387, 121682 (2020)

    Article  CAS  Google Scholar 

  11. M.F. Othman, A. Adam, G. Najafi, R. Mamat, Green fuel as alternative fuel for diesel engine: a review. Renew. Sust. Energ. Rev. 80, 694–709 (2017)

    Article  Google Scholar 

  12. C. Liu, X. Miao, J. Li, Outdoor formaldehyde matters and substantially impacts indoor formaldehyde concentrations. Build. Environ. 158, 145–150 (2019)

    Article  Google Scholar 

  13. M.-K. Kim, K.-D. Zoh, Occurrence and removals of micropollutants in water environment. Environ. Eng. Res. 21(4), 319–332 (2016)

    Article  Google Scholar 

  14. R. Álvarez-Ruiz, Y. Picó, Analysis of emerging and related pollutants in aquatic biota. Trends Environ. Anal. Chem. 25, e00082 (2020)

    Article  Google Scholar 

  15. M.J. Prauchner, F. Rodríguez-Reinoso, Chemical versus physical activation of coconut shell: a comparative study. Microporous Mesoporous Mater. 152, 163–171 (2012)

    Article  CAS  Google Scholar 

  16. J.F. Vivo-Vilches, F. Carrasco-Marín, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, Fitting the porosity of carbon xerogel by CO2 activation to improve the TMP/n-octane separation. Microporous Mesoporous Mater. 209, 10–17 (2015)

    Article  CAS  Google Scholar 

  17. S. Morales-Torres, A.M.T. Silva, A.F. Pérez-Cadenas, J.L. Faria, F.J. Maldonado-Hódar, J.L. Figueiredo, F. Carrasco-Marín, Wet air oxidation of trinitrophenol with activated carbon catalysts: effect of textural properties on the mechanism of degradation. Appl. Catal. B Environ. 100(1–2), 310–317 (2010)

    Article  CAS  Google Scholar 

  18. D.S. Su, S. Perathoner, G. Centi, Catalysis on nano-carbon materials: Going where to? Catal. Today 186(1), 1–6 (2012)

    Article  CAS  Google Scholar 

  19. J.F. Vivo-Vilches, E. Bailón-García, A.F. Pérez-Cadenas, F. Carrasco-Marín, F.J. Maldonado-Hódar, Tailoring the surface chemistry and porosity of activated carbons: evidence of reorganization and mobility of oxygenated surface groups. Carbon 68, 520–530 (2014)

    Article  CAS  Google Scholar 

  20. A. Elmouwahidi, J. Castelo-Quibén, J.F. Vivo-Vilches, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, F. Carrasco-Marín, Activated carbons from agricultural waste solvothermally doped with sulphur as electrodes for supercapacitors. Chem. Eng. J. 334, 1835–1841 (2018)

    Article  CAS  Google Scholar 

  21. H. Hamad, J. Castelo-Quibén, S. Morales-Torres, F. Carrasco-Marín, F.A. Pérez-Cadenas, J.F. Maldonado-Hódar, On the interactions and synergism between phases of carbon–phosphorus–titanium composites synthetized from cellulose for the removal of the orange-G dye. Materials 11(9), 1766 (2018)

    Article  Google Scholar 

  22. J.L. Figueiredo, Nanostructured porous carbons for electrochemical energy conversion and storage. Surf. Coat. Technol. 350, 307–312 (2018)

    Article  CAS  Google Scholar 

  23. S. Morales-Torres, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, F. Carrasco-Marín, Design of low-temperature Pt-carbon combustion catalysts for VOC’s treatments. J. Hazard. Mater. 183(1–3), 814–822 (2010)

    Article  CAS  Google Scholar 

  24. S. Morales-Torres, T.L.S. Silva, L.M. Pastrana-Martinez, A.T.S.C. Brandao, J.L. Figueiredo, A.M.T. Silva, Modification of the surface chemistry of single- and multi-walled carbon nanotubes by HNO3 and H2SO4 hydrothermal oxidation for application in direct contact membrane distillation. Phys. Chem. Chem. Phys. 16(24), 12237–12250 (2014)

    Article  CAS  Google Scholar 

  25. V. Calvino-Casilda, A.J. López-Peinado, C.J. Durán-Valle, R.M. Martín-Aranda, Last decade of research on activated carbons as catalytic support in chemical processes. Catal. Rev. 52(3), 325–380 (2010)

    Article  CAS  Google Scholar 

  26. F.J. Maldonado-Hódar, Advances in the development of nanostructured catalysts based on carbon gels. Catal. Today 218-219, 43–50 (2013)

    Article  Google Scholar 

  27. G.B. Baur, I. Yuranov, A. Renken, L. Kiwi-Minsker, Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface morphology. Adsorption 21(6), 479–488 (2015)

    Article  CAS  Google Scholar 

  28. L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, P. Falaras, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, Role of oxygen functionalities on the synthesis of photocatalytically active graphene–TiO2 composites. Appl. Catal. B Environ. 158-159, 329–340 (2014)

    Article  Google Scholar 

  29. M. Martin-Martinez, R.S. Ribeiro, B.F. Machado, P. Serp, S. Morales-Torres, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Role of nitrogen doping on the performance of carbon nanotube catalysts: a catalytic wet peroxide oxidation application. ChemCatChem 8(12), 2068–2078 (2016)

    Article  CAS  Google Scholar 

  30. E. Bailón-García, A. Elmouwahidi, F. Carrasco-Marín, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, Development of Carbon-ZrO2 composites with high performance as visible-light photocatalysts. Appl. Catal. B Environ. 217, 540–550 (2017)

    Article  Google Scholar 

  31. Y.N. Liang, W.-D. Oh, Y. Li, X. Hu, Nanocarbons as platforms for developing novel catalytic composites: overview and prospects. Appl. Catal. A Gen. 562, 94–105 (2018)

    Article  CAS  Google Scholar 

  32. S. Morales-Torres, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, Design of graphene-based TiO2 photocatalysts-a review. Environ. Sci. Pollut. Res. 19(9), 3676–3687 (2012)

    Article  CAS  Google Scholar 

  33. World Health Organization Occupational; Environmental Health Team, Guidelines for Air Quality (World Health Organization, Geneva, 2000)

    Google Scholar 

  34. United States Environmental Protection Agency. Technical Overview of Volatile Organic Compounds. https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds. Accessed 20 April 2020

  35. X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: a review. J. Hazard. Mater. 338, 102–123 (2017)

    Article  CAS  Google Scholar 

  36. E.A. Kolchanova, T.P. Lyubimova, Interface instability of methane hydrate deposits of variable permeability under permafrost conditions. Int. J. Heat Mass Transf. 98, 329–340 (2016)

    Article  CAS  Google Scholar 

  37. X. Yang, H. Yi, X. Tang, S. Zhao, Z. Yang, Y. Ma, T. Feng, X. Cui, Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure. J. Environ. Sci. 67, 104–114 (2018)

    Article  Google Scholar 

  38. X. Yu, S. Liu, G. Lin, X. Zhu, S. Zhang, R. Qu, C. Zheng, X. Gao, Insight into the significant roles of microstructures and functional groups on carbonaceous surfaces for acetone adsorption. RSC Adv. 8(38), 21541–21550 (2018)

    Article  CAS  Google Scholar 

  39. J.F. Vivo-Vilches, E. Bailón-García, A.F. Pérez-Cadenas, F. Carrasco-Marín, F.J. Maldonado-Hódar, Tailoring activated carbons for the development of specific adsorbents of gasoline vapors. J. Hazard. Mater. 263, 533–540 (2013)

    Article  CAS  Google Scholar 

  40. J.F. Vivo-Vilches, A.F. Pérez-Cadenas, F. Carrasco-Marín, F.J. Maldonado-Hódar, About the control of VOC’s emissions from blended fuels by developing specific adsorbents using agricultural residues. J. Environ. Chem. Eng. 3(4)., Part A, 2662–2669 (2015)

    Article  CAS  Google Scholar 

  41. Y. Liu, K. Mallouk, H. Emamipour, M.J. Rood, X. Liu, Z. Yan, Isobutane adsorption with carrier gas recirculation at different relative humidities using activated carbon fiber cloth and electrothermal regeneration. Chem. Eng. J. 360, 1011–1019 (2019)

    Article  CAS  Google Scholar 

  42. G.B. Baur, I. Yuranov, L. Kiwi-Minsker, Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde. Catal. Today 249, 252–258 (2015)

    Article  CAS  Google Scholar 

  43. A.M. Awad, R. Jalab, A. Benamor, M.S. Nasser, M.M. Ba-Abbad, M. El-Naas, A.W. Mohammad, Adsorption of organic pollutants by nanomaterial-based adsorbents: an overview. J. Mol. Liq. 301, 112335 (2020)

    Article  CAS  Google Scholar 

  44. G. Ersan, O.G. Apul, F. Perreault, T. Karanfil, Adsorption of organic contaminants by graphene nanosheets: a review. Water Res. 126, 385–398 (2017)

    Article  CAS  Google Scholar 

  45. W. Wu, K. Yang, W. Chen, W. Wang, J. Zhang, D. Lin, B. Xing, Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes. Water Res. 88, 492–501 (2016)

    Article  CAS  Google Scholar 

  46. Y.-H. Shih, M.-S. Li, Adsorption of selected volatile organic vapors on multiwall carbon nanotubes. J. Hazard. Mater. 154(1), 21–28 (2008)

    Article  CAS  Google Scholar 

  47. S. Tulaphol, S. Bunsan, E. Kanchanatip, H.Y. Miao, N. Grisdanurak, W. Den, Influence of chlorine substitution on adsorption of gaseous chlorinated phenolics on multi-walled carbon nanotubes embedded in SiO2. Int. J. Environ. Sci. Technol. 13(6), 1465–1474 (2016)

    Article  CAS  Google Scholar 

  48. C.M. Hussain, C. Saridara, S. Mitra, Modifying the sorption properties of multi-walled carbon nanotubesvia covalent functionalization. Analyst 134(9), 1928–1933 (2009)

    Article  CAS  Google Scholar 

  49. L. Yu, L. Wang, W. Xu, L. Chen, M. Fu, J. Wu, D. Ye, Adsorption of VOCs on reduced graphene oxide. J. Environ. Sci. 67, 171–178 (2018)

    Article  Google Scholar 

  50. L. Wu, Z. Qin, L. Zhang, T. Meng, F. Yu, J. Ma, CNT-enhanced amino-functionalized graphene aerogel adsorbent for highly efficient removal of formaldehyde. New J. Chem. 41(7), 2527–2533 (2017)

    Article  CAS  Google Scholar 

  51. F. Chu, Y. Zheng, B. Wen, L. Zhou, J. Yan, Y. Chen, Adsorption of toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid nanocomposites in a humid atmosphere. RSC Adv. 8(5), 2426–2432 (2018)

    Article  CAS  Google Scholar 

  52. V. Kumar, Y.-S. Lee, J.-W. Shin, K.-H. Kim, D. Kukkar, Y. Fai Tsang, Potential applications of graphene-based nanomaterials as adsorbent for removal of volatile organic compounds. Environ. Int. 135, 105356 (2020)

    Article  CAS  Google Scholar 

  53. S. Morales-Torres, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, F. Carrasco-Marín, Structural characterization of carbon xerogels: from film to monolith. Microporous Mesoporous Mater. 153, 24–29 (2012)

    Article  CAS  Google Scholar 

  54. E. Gallegos-Suárez, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, F. Carrasco-Marín, On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem. Eng. J. 181-182, 851–855 (2012)

    Article  Google Scholar 

  55. F.J. Maldonado-Hódar, C. Moreno-Castilla, F. Carrasco-Marín, A.F. Pérez-Cadenas, Reversible toluene adsorption on monolithic carbon aerogels. J. Hazard. Mater. 148(3), 548–552 (2007)

    Article  Google Scholar 

  56. H. Jirglová, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, Synthesis and properties of phloroglucinol−phenol−formaldehyde carbon aerogels and xerogels. Langmuir 25(4), 2461–2466 (2009)

    Article  Google Scholar 

  57. D. Espinosa-Iglesias, C. Valverde-Sarmiento, A.F. Pérez-Cadenas, M.I. Bautista-Toledo, F.J. Maldonado-Hódar, F. Carrasco-Marín, Mesoporous carbon-xerogels films obtained by microwave assisted carbonization. Mater. Lett. 141, 135–137 (2015)

    Article  CAS  Google Scholar 

  58. S. Han, Q. Sun, H. Zheng, J. Li, C. Jin, Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydr. Polym. 136, 95–100 (2016)

    Article  CAS  Google Scholar 

  59. C. Moreno-Castilla, F.J. Maldonado-Hódar, F. Carrasco-Marín, E. Rodríguez-Castellón, Surface characteristics of titania/carbon composite aerogels. Langmuir 18(6), 2295–2299 (2002)

    Article  CAS  Google Scholar 

  60. L. Zhu, L. Meng, J. Shi, J. Li, X. Zhang, M. Feng, Metal-organic frameworks/carbon-based materials for environmental remediation: a state-of-the-art mini-review. J. Environ. Manag. 232, 964–977 (2019)

    Article  CAS  Google Scholar 

  61. X.-W. Liu, T.-J. Sun, J.-L. Hu, S.-D. Wang, Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. J. Mater. Chem. A 4(10), 3584–3616 (2016)

    Article  CAS  Google Scholar 

  62. W.D.P. Rengga, A. Chafidz, M. Sudibandriyo, M. Nasikin, A.E. Abasaeed, Silver nano-particles deposited on bamboo-based activated carbon for removal of formaldehyde. J. Environ. Chem. Eng. 5(2), 1657–1665 (2017)

    Article  CAS  Google Scholar 

  63. Y. Wang, M. Wang, Z. Wang, S. Wang, J. Fu, Tunable-quaternary (N, S, O, P)-doped porous carbon microspheres with ultramicropores for CO2 capture. Appl. Surf. Sci. 507, 145130 (2020)

    Article  CAS  Google Scholar 

  64. S. Cao, H. Zhao, D. Hu, J.-A. Wang, M. Li, Z. Zhou, Q. Shen, N. Sun, W. Wei, Preparation of potassium intercalated carbons by in-situ activation and speciation for CO2 capture from flue gas. J. CO2 Utiliz. 35, 59–66 (2020)

    Article  CAS  Google Scholar 

  65. J. Gao, Y. Hoshino, G. Inoue, Honeycomb-carbon-fiber-supported amine-containing nanogel particles for CO2 capture using a rotating column TVSA. Chem. Eng. J. 383, 123123 (2020)

    Article  CAS  Google Scholar 

  66. M.T. Izquierdo, B. Rubio, C. Mayoral, J.M. Andrés, Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas. Fuel 82(2), 147–151 (2003)

    Article  CAS  Google Scholar 

  67. S. Ding, Y. Li, T. Zhu, Y. Guo, Regeneration performance and carbon consumption of semi-coke and activated coke for SO2 and NO removal. J. Environ. Sci. 34, 37–43 (2015)

    Article  CAS  Google Scholar 

  68. Y. Xue, Y. Guo, Z. Zhang, Y. Guo, Y. Wang, G. Lu, The role of surface properties of activated carbon in the catalytic reduction of NO by carbon. Appl. Surf. Sci. 255(5, Part 2), 2591–2595 (2008)

    Article  CAS  Google Scholar 

  69. S. Bashkova, D. Deoki, T.J. Bandosz, Effect of silver nanoparticles deposited on micro/mesoporous activated carbons on retention of NOx at room temperature. J. Colloid Interface Sci. 354(1), 331–340 (2011)

    Article  CAS  Google Scholar 

  70. E. Bailón-García, A. Elmouwahidi, F. Ribeiro, C. Henriques, A.F. Pérez-Cadenas, F. Carrasco-Marín, F.J. Maldonado-Hódar, Reduction of NO with new vanadium-carbon xerogel composites. Effect of the oxidation state of vanadium species. Carbon 156, 194–204 (2020)

    Article  Google Scholar 

  71. R.A. Catalão, F.J. Maldonado-Hódar, A. Fernandes, C. Henriques, M.F. Ribeiro, Reduction of NO with metal-doped carbon aerogels. Appl. Catal. B Environ. 88(1), 135–141 (2009)

    Article  Google Scholar 

  72. J. Zawadzki, M. Wiśniewski, An infrared study of the behavior of SO2 and NOx over carbon and carbon-supported catalysts. Catal. Today 119(1), 213–218 (2007)

    Article  CAS  Google Scholar 

  73. H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review. Cat. Sci. Technol. 5(5), 2649–2669 (2015)

    Article  CAS  Google Scholar 

  74. C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem. Rev. 119(7), 4471–4568 (2019)

    Article  CAS  Google Scholar 

  75. S. Morales-Torres, F. Carrasco-Marín, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, Coupling noble metals and carbon supports in the development of combustion catalysts for the abatement of BTX compounds in air streams. Catalysts 5(2), 774–799 (2015)

    Article  CAS  Google Scholar 

  76. T. García, B. Solsona, S.H. Taylor, Naphthalene total oxidation over metal oxide catalysts. Appl. Catal. B Environ. 66(1), 92–99 (2006)

    Article  Google Scholar 

  77. S. Morales-Torres, A.F. Pérez-Cadenas, F. Kapteijn, F. Carrasco-Marín, F.J. Maldonado-Hódar, J.A. Moulijn, Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX. Appl. Catal. B Environ. 89(3), 411–419 (2009)

    Article  CAS  Google Scholar 

  78. A.F. Pérez-Cadenas, S. Morales-Torres, F. Kapteijn, F.J. Maldonado-Hódar, F. Carrasco-Marín, C. Moreno-Castilla, J.A. Moulijn, Carbon-based monolithic supports for palladium catalysts: the role of the porosity in the gas-phase total combustion of m-xylene. Appl. Catal. B Environ. 77(3), 272–277 (2008)

    Article  Google Scholar 

  79. S. Jiang, S. Song, Enhancing the performance of Co3O4/CNTs for the catalytic combustion of toluene by tuning the surface structures of CNTs. Appl. Catal. B Environ. 140-141, 1–8 (2013)

    Article  CAS  Google Scholar 

  80. M.N. Padilla-Serrano, F.J. Maldonado-Hódar, C. Moreno-Castilla, Influence of Pt particle size on catalytic combustion of xylenes on carbon aerogel-supported Pt catalysts. Appl. Catal. B Environ. 61(3), 253–258 (2005)

    Article  CAS  Google Scholar 

  81. H. Liu, Y. Ma, J. Chen, M. Wen, G. Li, T. An, Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO2-assisted synthesized mesoporous carbon confined mixed-phase TiO2 nanocomposites derived from MOFs. Appl. Catal. B Environ. 250, 337–346 (2019)

    Article  CAS  Google Scholar 

  82. N. Iqbal, A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensing one- and two-dimensional carbon nanostructures and nanohybrids: Progress and perspectives. Sensors Actuators B Chem. 181, 9–21 (2013)

    Article  CAS  Google Scholar 

  83. U. Thubsuang, D. Sukanan, S. Sahasithiwat, S. Wongkasemjit, T. Chaisuwan, Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite. Mater. Sci. Eng. B 200, 67–77 (2015)

    Article  CAS  Google Scholar 

  84. O. Tsydenova, V. Batoev, A. Batoeva, Solar-enhanced advanced oxidation processes for water treatment: simultaneous removal of pathogens and chemical pollutants. Int. J. Environ. Res. Public Health 12(8), 9542 (2015)

    Article  CAS  Google Scholar 

  85. A. Sanchez-Polo, J. Rivera-Utrilla, Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone. Carbon 41(2), 303–307 (2003)

    Article  CAS  Google Scholar 

  86. A. Gonçalves, J.J.M. Órfão, M.F.R. Pereira, Ozonation of bezafibrate promoted by carbon materials. Appl. Catal. B Environ. 140-141, 82–91 (2013)

    Article  Google Scholar 

  87. L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, J.L. Figueiredo, J.L. Faria, P. Falaras, A.M.T. Silva, Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Catal. B Environ. 123-124, 241–256 (2012)

    Article  Google Scholar 

  88. M.J. Sampaio, R.R. Bacsa, A. Benyounes, R. Axet, P. Serp, C.G. Silva, A.M.T. Silva, J.L. Faria, Synergistic effect between carbon nanomaterials and ZnO for photocatalytic water decontamination. J. Catal. 331, 172–180 (2015)

    Article  CAS  Google Scholar 

  89. S. Morales-Torres, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Surf. Sci. 275, 361–368 (2013)

    Article  CAS  Google Scholar 

  90. E. Bailón-García, A. Elmouwahidi, M.A. Álvarez, F. Carrasco-Marín, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Appl. Catal. B Environ. 201, 29–40 (2017)

    Article  Google Scholar 

  91. L.M. Pastrana-Martínez, S. Morales-Torres, S.A.C. Carabineiro, J.G. Buijnsters, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, Nanodiamond–TiO2 composites for heterogeneous photocatalysis. ChemPlusChem 78(8), 801–807 (2013)

    Article  Google Scholar 

  92. S. Gupta, M. Tripathi, An overview of commonly used semiconductor nanoparticles in photocatalysis. High Energy Chem. 46(1), 1–9 (2012)

    Article  CAS  Google Scholar 

  93. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41(2), 782–796 (2012)

    Article  CAS  Google Scholar 

  94. Y. Li, G. Lu, S. Li, Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere 52(5), 843–850 (2003)

    Article  CAS  Google Scholar 

  95. K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132(16), 5858–5868 (2010)

    Article  CAS  Google Scholar 

  96. J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114(30), 13118–13125 (2010)

    Article  CAS  Google Scholar 

  97. M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, H. Idriss, The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 3(6), 489–492 (2011)

    Article  CAS  Google Scholar 

  98. G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, G.Q. Lu, H.-M. Cheng, Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132(33), 11642–11648 (2010)

    Article  CAS  Google Scholar 

  99. A.S. Weber, A.M. Grady, R.T. Koodali, Lanthanide modified semiconductor photocatalysts. Cat. Sci. Technol. 2(4), 683–693 (2012)

    Article  CAS  Google Scholar 

  100. W. Kim, T. Tachikawa, T. Majima, W. Choi, Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: enhanced activity for H2 production and dechlorination of CCl4. J. Phys. Chem. C 113(24), 10603–10609 (2009)

    Article  CAS  Google Scholar 

  101. T. Fotiou, T.M. Triantis, T. Kaloudis, L.M. Pastrana-Martínez, V. Likodimos, P. Falaras, A.M.T. Silva, A. Hiskia, Photocatalytic degradation of microcystin-LR and off-odor compounds in water under UV-A and solar light with a nanostructured photocatalyst based on reduced graphene oxide–TiO2 composite. Identification of intermediate products. Ind. Eng. Chem. Res. 52(39), 13991–14000 (2013)

    Article  CAS  Google Scholar 

  102. V.M. Mboula, V. Héquet, Y. Andrès, Y. Gru, R. Colin, J.M. Doña-Rodríguez, L.M. Pastrana-Martínez, A.M.T. Silva, M. Leleu, A.J. Tindall, S. Mateos, P. Falaras, Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity. Appl. Catal. B Environ. 162(0), 437–444 (2015)

    Article  CAS  Google Scholar 

  103. V. Maroga Mboula, V. Héquet, Y. Andrès, L.M. Pastrana-Martínez, J.M. Doña-Rodríguez, A.M.T. Silva, P. Falaras, Photocatalytic degradation of endocrine disruptor compounds under simulated solar light. Water Res. 47(12), 3997–4005 (2013)

    Article  CAS  Google Scholar 

  104. A. Katsoni, H.T. Gomes, L.M. Pastrana-Martínez, J.L. Faria, J.L. Figueiredo, D. Mantzavinos, A.M.T. Silva, Degradation of trinitrophenol by sequential catalytic wet air oxidation and solar TiO2 photocatalysis. Chem. Eng. J. 172(2–3), 634–640 (2011)

    Article  CAS  Google Scholar 

  105. M. Cruz, C. Gomez, C.J. Duran-Valle, L.M. Pastrana-Martínez, J.L. Faria, A.M.T. Silva, M. Faraldos, A. Bahamonde, Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Appl. Surf. Sci. 416, 1013–1021 (2017)

    Article  CAS  Google Scholar 

  106. H. Liu et al., Chemical doping of graphene. J. Mater. Chem. 21, 3335–3345 (2011)

    Article  CAS  Google Scholar 

  107. X.-K. Kong, C.-L. Chen, Q.-W. Chen, Doped graphene for metal-free catalysis. Chem. Soc. Rev. 43(8), 2841–2857 (2014)

    Article  CAS  Google Scholar 

  108. X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huang, P. Chen, Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43(20), 7067–7098 (2014)

    Article  CAS  Google Scholar 

  109. L.K. Putri, W.J. Ong, W.S. Chang, S.P. Chai, Heteroatom doped graphene in photocatalysis: a review. Appl. Surf. Sci. 358, 2–14 (2015)

    Article  CAS  Google Scholar 

  110. M. Pedrosa, L.M. Pastrana-Martínez, M.F.R. Pereira, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, N/S-doped graphene derivatives and TiO2 for catalytic ozonation and photocatalysis of water pollutants. Chem. Eng. J. 348, 888–897 (2018)

    Article  CAS  Google Scholar 

  111. T.-D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.-D. Pham, S. Kim, J.S. Chung, E.J. Kim, S.H. Hur, The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J. 170(1), 226–232 (2011)

    Article  CAS  Google Scholar 

  112. L.M. Pastrana-Martínez, S. Morales-Torres, A.G. Kontos, N.G. Moustakas, J.L. Faria, J.M. Doña-Rodríguez, P. Falaras, A.M.T. Silva, TiO2, surface modified TiO2 and graphene oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/Vis and visible light. Chem. Eng. J. 224, 17–23 (2013)

    Article  Google Scholar 

  113. L.K. Putri, L.-L. Tan, W.-J. Ong, W.S. Chang, S.-P. Chai, Graphene oxide: exploiting its unique properties toward visible-light-driven photocatalysis. Appl. Mater. Today 4, 9–16 (2016)

    Article  Google Scholar 

  114. M. Xing, W. Fang, X. Yang, B. Tian, J. Zhang, Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis. Chem. Commun. 50(50), 6637–6640 (2014)

    Article  CAS  Google Scholar 

  115. Z.R. Tang, Y. Zhang, N. Zhang, Y.J. Xu, New insight into the enhanced visible light photocatalytic activity over boron-doped reduced graphene oxide. Nanoscale 7(16), 7030–7034 (2015)

    Article  CAS  Google Scholar 

  116. W. Peng, X. Li, Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst. Nano Res. 6(4), 286–292 (2013)

    Article  CAS  Google Scholar 

  117. A.S. Adeleye, X. Wang, F. Wang, R. Hao, W. Song, Y. Li, Photoreactivity of graphene oxide in aqueous system: reactive oxygen species formation and bisphenol A degradation. Chemosphere 195, 344–350 (2018)

    Article  CAS  Google Scholar 

  118. J. Oh, Y.H. Chang, Y.H. Kim, S. Park, Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light. Phys. Chem. Chem. Phys. 18(16), 10882–10886 (2016)

    Article  CAS  Google Scholar 

  119. H. Zhang, Y. Niu, W. Hu, Nitrogen/sulfur-doping of graphene with cysteine as a heteroatom source for oxygen reduction electrocatalysis. J. Colloid Interface Sci. 505, 32–37 (2017)

    Article  CAS  Google Scholar 

  120. M. Pedrosa, E.S. Da Silva, L.M. Pastrana-Martínez, G. Drazic, P. Falaras, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, Hummers’ and Brodie’s graphene oxides as photocatalysts for phenol degradation. J. Colloid Interface Sci. 567, 243–255 (2020)

    Article  CAS  Google Scholar 

  121. C.G. Silva, J.L. Faria, Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl. Catal. B Environ. 101(1–2), 81–89 (2010)

    Google Scholar 

  122. L.M. Pastrana-Martínez, S. Morales-Torres, S.K. Papageorgiou, F.K. Katsaros, G.E. Romanos, J.L. Figueiredo, J.L. Faria, P. Falaras, A.M.T. Silva, Photocatalytic behaviour of nanocarbon-TiO2 composites and immobilization into hollow fibres. Appl. Catal. B Environ. 142-143, 101–111 (2013)

    Article  Google Scholar 

  123. M.J. Sampaio, C.G. Silva, A.M.T. Silva, L.M. Pastrana-Martínez, C. Han, S. Morales-Torres, J.L. Figueiredo, D.D. Dionysiou, J.L. Faria, Carbon-based TiO2 materials for the degradation of Microcystin-LA. Appl. Catal. B Environ. 170-171, 74–82 (2015)

    Article  CAS  Google Scholar 

  124. M.J. Sampaio, L.M. Pastrana-Martinez, A.M.T. Silva, J.G. Buijnsters, C. Han, C.G. Silva, S.A.C. Carabineiro, D.D. Dionysiou, J.L. Faria, Nanodiamond-TiO2 composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light. RSC Adv. 5(72), 58363–58370 (2015)

    Article  CAS  Google Scholar 

  125. L.M. Pastrana-Martínez, S. Morales-Torres, S.K. Papageorgiou, F.K. Katsaros, G.E. Romanos, J.L. Figueiredo, J.L. Faria, P. Falaras, A.M.T. Silva, Photocatalytic behaviour of nanocarbon–TiO2 composites and immobilization into hollow fibres. Appl. Catal. B 142-143, 101–111 (2013)

    Article  Google Scholar 

  126. A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)

    Article  CAS  Google Scholar 

  127. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechol. 7(1), 11–23 (2012)

    Article  CAS  Google Scholar 

  128. R.R.N. Marques, M.J. Sampaio, P.M. Carrapiço, C.G. Silva, S. Morales-Torres, G. Dražić, J.L. Faria, A.M.T. Silva, Photocatalytic degradation of caffeine: developing solutions for emerging pollutants. Catal. Today 209, 108–115 (2013)

    Article  CAS  Google Scholar 

  129. K. Ikehata, M.G. El-Din, Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: a review (part II). Ozone Sci. Eng. 27(3), 173–202 (2005)

    Article  CAS  Google Scholar 

  130. K. Ikehata, M.G. El-Din, Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: a review (part I). Ozone Sci. Eng. 27(2), 83–114 (2005)

    Article  CAS  Google Scholar 

  131. J. Levec, A. Pintar, Catalytic wet-air oxidation processes: a review. Catal. Today 124(3–4), 172–184 (2007)

    Article  CAS  Google Scholar 

  132. R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Appl. Catal. B Environ. 187, 428–460 (2016)

    Article  CAS  Google Scholar 

  133. R.P. Rocha, J. Restivo, J.P.S. Sousa, J.J.M. Órfão, M.F.R. Pereira, J.L. Figueiredo, Nitrogen-doped carbon xerogels as catalysts for advanced oxidation processes. Catal. Today 241(0), 73–79 (2015)

    Article  CAS  Google Scholar 

  134. J. Rivera-Utrilla, M. Sánchez-Polo, Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Appl. Catal. B Environ. 39(4), 319–329 (2002)

    Article  CAS  Google Scholar 

  135. BRILLAS, Enrique; MUR, Eva; CASADO, Juan, Iron (II) Catalysis of the Mineralization of Aniline Using a Carbon‐PTFE O 2‐Fed Cathode. Journal of the Electrochemical Society. 143(3), L49 (1996)

    Google Scholar 

  136. E. Brillas, I. Sirés, M.A. Oturan, Electro-fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109(12), 6570–6631 (2009)

    Article  CAS  Google Scholar 

  137. J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in catalysis with carbons. Catal. Today 150(1–2), 2–7 (2010)

    Article  CAS  Google Scholar 

  138. H. Chen, G. Yang, Y. Feng, C. Shi, S. Xu, W. Cao, X. Zhang, Biodegradability enhancement of coking wastewater by catalytic wet air oxidation using aminated activated carbon as catalyst. Chem. Eng. J. 198–199(0), 45–51 (2012)

    Article  Google Scholar 

  139. R.P. Rocha, A.G. Gonçalves, L.M. Pastrana-Martínez, B.C. Bordoni, O.S.G.P. Soares, J.J.M. Órfão, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, M.F.R. Pereira, Nitrogen-doped graphene-based materials for advanced oxidation processes. Catal. Today 249, 192–198 (2015)

    Article  CAS  Google Scholar 

  140. J.L. Diaz de Tuesta, A. Quintanilla, J.A. Casas, S. Morales-Torres, J.L. Faria, A.M.T. Silva, H.T. Gomes, The pH effect on the kinetics of 4-nitrophenol removal by CWPO with doped carbon black catalysts. Catal. Today (2019)

    Google Scholar 

  141. M. Martin-Martinez, B.F. Machado, P. Serp, S. Morales-Torres, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Carbon nanotubes as catalysts for wet peroxide oxidation: the effect of surface chemistry. Catal. Today (2019)

    Google Scholar 

  142. L. Xing, Y. Xie, H. Cao, D. Minakata, Y. Zhang, J.C. Crittenden, Activated carbon-enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: effects of the type and number of basic sites. Chem. Eng. J. 245(0), 71–79 (2014)

    Article  CAS  Google Scholar 

  143. H. Cao, L. Xing, G. Wu, Y. Xie, S. Shi, Y. Zhang, D. Minakata, J.C. Crittenden, Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid. Appl. Catal. B Environ. 146(0), 169–176 (2014)

    Article  CAS  Google Scholar 

  144. S. Morales-Torres, A.M.T. Silva, F.J. Maldonado-Hódar, B.F. Machado, A.F. Pérez-Cadenas, J.L. Faria, J.L. Figueiredo, F. Carrasco-Marín, Pt-catalysts supported on activated carbons for catalytic wet air oxidation of aniline: activity and stability. Appl. Catal. B Environ. 105(1–2), 86–94 (2011)

    Article  CAS  Google Scholar 

  145. M. Kimura, I. Miyamoto, Discovery of the activated-carbon radical AC+ and the novel oxidation-reactions comprising the AC/AC+ cycle as a catalyst in an aqueous-solution. Bull. Chem. Soc. Jpn. 67(9), 2357–2360 (1994)

    Article  CAS  Google Scholar 

  146. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8(3–4), 501–551 (2004)

    Article  CAS  Google Scholar 

  147. R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, The influence of structure and surface chemistry of carbon materials on the decomposition of hydrogen peroxide. Carbon 62(0), 97–108 (2013)

    Article  CAS  Google Scholar 

  148. F. Lücking, H. Köser, M. Jank, A. Ritter, Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Res. 32(9), 2607–2614 (1998)

    Article  Google Scholar 

  149. A. Dhaouadi, N. Adhoum, Heterogeneous catalytic wet peroxide oxidation of paraquat in the presence of modified activated carbon. Appl. Catal. B Environ. 97(1–2), 227–235 (2010)

    Article  CAS  Google Scholar 

  150. H.T. Gomes, S.M. Miranda, M.J. Sampaio, A.M.T. Silva, J.L. Faria, Activated carbons treated with sulphuric acid: catalysts for catalytic wet peroxide oxidation. Catal. Today 151(1–2), 153–158 (2010)

    Article  CAS  Google Scholar 

  151. C.M. Domínguez, P. Ocón, A. Quintanilla, J.A. Casas, J.J. Rodriguez, Graphite and carbon black materials as catalysts for wet peroxide oxidation. Appl. Catal. B Environ. 144(0), 599–606 (2014)

    Article  Google Scholar 

  152. R.S. Ribeiro, A.M.T. Silva, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Graphene-based materials for the catalytic wet peroxide oxidation of highly concentrated 4-nitrophenol solutions. Catal. Today 249, 204–212 (2015)

    Article  CAS  Google Scholar 

  153. J.H. Ramirez, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl. Catal. B Environ. 75(3), 312–323 (2007)

    Article  CAS  Google Scholar 

  154. F. Duarte, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, L.M. Madeira, Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels. Appl. Catal. B Environ. 85(3), 139–147 (2009)

    Article  CAS  Google Scholar 

  155. I. Mesquita, L.C. Matos, F. Duarte, F.J. Maldonado-Hódar, A. Mendes, L.M. Madeira, Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon. J. Hazard. Mater. 237-238, 30–37 (2012)

    Article  CAS  Google Scholar 

  156. C.S.D. Rodrigues, O.S.G.P. Soares, M.T. Pinho, M.F.R. Pereira, L.M. Madeira, p-Nitrophenol degradation by heterogeneous Fenton’s oxidation over activated carbon-based catalysts. Appl. Catal. B Environ. 219, 109–122 (2017)

    Article  CAS  Google Scholar 

  157. A.I. Zárate-Guzmán, L.V. González-Gutiérrez, L.A. Godínez, A. Medel-Reyes, F. Carrasco-Marín, L.A. Romero-Cano, Towards understanding of heterogeneous Fenton reaction using carbon-Fe catalysts coupled to in-situ H2O2 electro-generation as clean technology for wastewater treatment. Chemosphere 224, 698–706 (2019)

    Article  Google Scholar 

  158. W. Zhou, L. Rajic, L. Chen, K. Kou, Y. Ding, X. Meng, Y. Wang, B. Mulaw, J. Gao, Y. Qin, A.N. Alshawabkeh, Activated carbon as effective cathode material in iron-free Electro-Fenton process: integrated H2O2 electrogeneration, activation, and pollutants adsorption. Electrochim. Acta 296, 317–326 (2019)

    Article  CAS  Google Scholar 

  159. W. Chen, X. Yang, J. Huang, Y. Zhu, Y. Zhou, Y. Yao, C. Li, Iron oxide containing graphene/carbon nanotube based carbon aerogel as an efficient E-Fenton cathode for the degradation of methyl blue. Electrochim. Acta 200, 75–83 (2016)

    Article  CAS  Google Scholar 

  160. N. Fernández-Sáez, D.E. Villela-Martinez, F. Carrasco-Marín, A.F. Pérez-Cadenas, L.M. Pastrana-Martínez, Heteroatom-doped graphene aerogels and carbon-magnetite catalysts for the heterogeneous electro-Fenton degradation of acetaminophen in aqueous solution. J. Catal. 378, 68–79 (2019)

    Article  Google Scholar 

  161. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147(1), 1–59 (2009)

    Article  CAS  Google Scholar 

  162. L. Wang, Z. Yuan, H.E. Karahan, Y. Wang, X. Sui, F. Liu, Y. Chen, Nanocarbon materials in water disinfection: state-of-the-art and future directions. Nanoscale 11(20), 9819–9839 (2019)

    Article  CAS  Google Scholar 

  163. P. Fernández-Ibáñez, M.I. Polo-López, S. Malato, S. Wadhwa, J.W.J. Hamilton, P.S.M. Dunlop, R. D’Sa, E. Magee, K. O’Shea, D.D. Dionysiou, J.A. Byrne, Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem. Eng. J. 261, 36–44 (2015)

    Article  Google Scholar 

  164. N.F.F. Moreira, C. Narciso-da-Rocha, M.I. Polo-López, L.M. Pastrana-Martínez, J.L. Faria, C.M. Manaia, P. Fernández-Ibáñez, O.C. Nunes, A.M.T. Silva, Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Res. 135, 195–206 (2018)

    Article  CAS  Google Scholar 

  165. X. Zeng, Z. Wang, N. Meng, D.T. McCarthy, A. Deletic, J.-h. Pan, X. Zhang, Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. Appl. Catal. B Environ. 202, 33–41 (2017)

    Google Scholar 

  166. X. Zeng, Z. Wang, G. Wang, T.R. Gengenbach, D.T. McCarthy, A. Deletic, J. Yu, X. Zhang, Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Appl. Catal. B Environ. 218, 163–173 (2017)

    Google Scholar 

  167. L. Chen, A. Pinto, A.N. Alshawabkeh, Activated carbon as a cathode for water disinfection through the electro-fenton process. Catalysts 9(7), 601 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Spanish Project ref. RTI2018-099224-B-I00 from ERDF/Ministry of Science, Innovation and Universities—State Research Agency. LMPM (RYC-2016-19347) and SMT (RYC-2019-026634-I) acknowledge the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Social Found for Ramón y Cajal research contracts. “Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente” of the University of Granada (UEQ - UGR) is gratefully acknowledged for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa M. Pastrana-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morales-Torres, S., Pastrana-Martínez, L.M., Maldonado-Hódar, F.J. (2021). Carbon Nanomaterials for Air and Water Remediation. In: Piumetti, M., Bensaid, S. (eds) Nanostructured Catalysts for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-58934-9_12

Download citation

Publish with us

Policies and ethics