Skip to main content

FLP-Mediated C–H-Activation

  • Chapter
  • First Online:
Frustrated Lewis Pairs

Part of the book series: Molecular Catalysis ((MOLCAT,volume 2))

Abstract

The C–H functionalization of aromatic molecules is a green approach that allows creating complex molecules from simple reagents. While these transformations are mainly catalysed using transition metal complexes, the main group molecules, including frustrated Lewis pairs, have been shown to be efficient species to functionalize C–H bonds. This chapter describes the different approaches and mechanisms that are used to activate C–H bonds using Lewis acidic boron and silicon species. On the one hand, highly electrophilic cationic boron and silicon species can activate C–H bonds by an electrophilic addition pathway that generates a Wheland intermediate that is further deprotonated by a Lewis base. On the other hand, frustrated Lewis pairs act in a concerted way where the Lewis acid activation and the deprotonation by a base occur simultaneously. In both systems, the nature of the Lewis acid and Lewis base plays an important role on the activity and the selectivity of the functionalization reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HBPin:

4,4,5,5-Tetramethyl-1,3,2-dioxaborolane

HBCat:

Catecholborane

Pin:

Pinacolate

Cat:

Catecholate

9-BBN:

9-Borabicyclo[3.3.1]nonane

3c-2e:

Three-centre two-electron

AIBN:

Azobisisobutyronitrile

Ar:

Aryl-

Bn:

Benzyl-

BOC:

tert-Butyloxycarbonyl

bpy:

2,2′-Bipyridine

COD:

1,5-Cyclooctadiene

Cy:

Cyclohexyl-

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DTBMP:

2,6-Di-tert-butyl-4-methylpyridine

dTBP:

2,6-Di-tert-butylpyridine

EAS:

Electrophilic aromatic substitution

Et:

Ethyl-

exp:

Experimental

FDA:

Food and Drug Administration

FLP:

Frustrated Lewis pair

fur:

Furyl-

HOMO:

Highest occupied molecular orbital

Int:

Intermediate

LUMO:

Lowest unoccupied molecular orbital

m :

meta-

Me:

Methyl-

NMR:

Nuclear magnetic resonance

NTf2:

Bistriflimide anion, [(CF3SO2)2N]

o :

Ortho-

p :

Para-

PAH:

Polycyclic aromatic hydrocarbons

Ph:

Phenyl-

PMP:

1,2,2,6,6-Pentamethylpiperidine

Pip:

Piperidyl-

tBu:

Tert-Butyl-

TfO :

Triflate anion, (CF3SO3)

THF:

Tetrahydrofuran

THT:

Tetrahydrothiophene

TIPS:

Triisopropylsilyl-

TM:

Transition metal

TMP:

2,2,6,6-Tetramethylpiperidine

TMS:

Trimethylsilyl

Tol:

Tolyl-

Ts:

Tosyl-

TS:

Transition state

tTBP:

2,4,6-Tri-tert-butylpyridine

References

  1. Frankowski KJ, Liu R, Milligan GL, Moeller KD, Aubé J (2015) Practical Electrochemical Anodic Oxidation of Polycyclic Lactams for Late Stage Functionalization. Angew Chem Int Ed 54:10555–10558. https://doi.org/10.1002/anie.201504775

    Article  CAS  Google Scholar 

  2. Abrams DJ, Provencher PA, Sorensen EJ (2018) Recent Applications of C-H Functionalization in Complex Natural Product Synthesis. Chem Soc Rev 47:8925–8967. https://doi.org/10.1039/c8cs00716k

  3. Davies DL, Donald SMA, Macgregor SA (2005) Computational Study of the Mechanism of Cyclometalation by Palladium Acetate. J Am Chem Soc 127:13754–13755. https://doi.org/10.1021/ja052047w

  4. Wheland GW (1942) A Quantum Mechanical Investigation of the Orientation of Substituents in Aromatic Molecules. J Am Chem Soc 64:900–908. https://doi.org/10.1021/ja01256a047

  5. Nguyen P, Blom HP, Westcott SA, Taylor NJ, Marder TB (1993) Synthesis and Structures of the First Transition-Metal Tris(boryl) Complexes: (η6-Arene)Ir(BO2C6H4)3. J Am Chem Soc 115:9329–9330. https://doi.org/10.1021/ja00073a075

  6. Cho JY, Tse MK, Holmes D, Maleczka Jr. RE, Smith MR III (2002) Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic C-H Bonds. Science 295:305–308. https://doi.org/10.1126/science.1067074

  7. Iverson CN, Smith MR (1999) Stoichiometric and Catalytic B-C Bond Formation from Unactivated Hydrocarbons and Boranes. J Am Chem Soc 121:7696–7697. https://doi.org/10.1021/ja991258w

  8. Cho JY, Iverson CN, Smith MR (2000) Steric and Chelate Directing Effects in Aromatic Borylation. J Am Chem Soc 122:12868–12869. https://doi.org/10.1021/ja0013069

  9. Chen H, Schlecht S, Semple TC, Hartwig JF (2000) Thermal, Catalytic, Regiospecific Functionalization of Alkanes. Science 287:1995–1997. https://doi.org/10.1126/science.287.5460.1995

  10. Ishiyama T, Nobuta Y, Hartwig JF, Miyaura N (2003) Room Temperature Borylation of Arenes and Heteroarenes Using Stoichiometric Amounts of Pinacolborane Catalyzed by Iridium Complexes in an Inert Solvent. Chem Commun 2924–2925. https://doi.org/10.1039/B311103B

  11. Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi, NR, Hartwig JF (2002) Mild Iridium-Catalyzed Borylation of Arenes. High Turnover Numbers, Room Temperature Reactions, and Isolation of a Potential Intermediate. J Am Chem Soc 124:390–391. https://doi.org/10.1021/ja0173019

  12. Takagi J, Sato K, Hartwig JF, Ishiyama T, Miyaura N (2002) Iridium-Catalyzed C-H Coupling Reaction of Heteroaromatic Compounds with Bis(pinacolato)diboron: Regioselective Synthesis of Heteroarylboronates. Tetrahedron Lett 43:5649–5651. https://doi.org/10.1016/S0040-4039(02)01135-8

  13. Ishiyama T, Miyaura N (2006) Iridium-Catalyzed Borylation of Arenes and Heteroarenes via C-H activation. Pure Appl Chem 78:1369–1375. https://doi.org/10.1351/pac200678071369

  14. Larsen MA, Hartwig JF (2014) Iridium-Catalyzed C-H Borylation of Heteroarenes: Scope, Regioselectivity, Application to Late-Stage Functionalization, and Mechanism. J Am Chem Soc 136:4287–4299. https://doi.org/10.1021/ja412563e

  15. Vanchura BA, Preshlock SM, Roosen PC, Kallepalli VA, Staples RJ, Maleczka Jr. RE, Singleton DA, Smith MR III (2010) Electronic Effects in Iridium C-H Borylations: Insights from Unencumbered Substrates and Variation of Boryl Ligand Substituents. Chem Commun 46:7724–7726. https://doi.org/10.1039/c0cc02041a

  16. Ryabov AD, Sakodinskaya IK, Yatsimirsky AK (1985) Kinetics and Mechanism of Ortho-Palladation of Ring-Substituted N,N-Dimethylbenzylamines. J Chem Soc, Dalton Trans 2629–2638. https://doi.org/10.1039/DT9850002629

  17. García-Cuadrado D, De Mendoza P, Braga AAC, Maseras F, Echavarren AM (2007) Proton-Abstraction Mechanism in the Palladium-Catalyzed Intramolecular Arylation: Substituent Effects. J Am Chem Soc 129:6880–6886. hhttps://doi.org/10.1021/ja071034a

  18. García-Cuadrado D, Braga AAC, Maseras F, Echavarren AM (2006) Proton Abstraction Mechanism for the Palladium-Catalyzed Intramolecular Arylation. J Am Chem Soc 128:1066–1067. https://doi.org/10.1021/ja056165v

  19. Lafrance M, Fagnou K (2006) Palladium-Catalyzed Benzene Arylation: Incorporation of Catalytic Pivalic Acid as a Proton Shuttle and a Key Element in Catalyst Design. J Am Chem Soc 128:16496–16497. https://doi.org/10.1021/ja067144j

  20. Lafrance M, Rowley CN, Woo TK, Fagnou K (2006) Catalytic Intermolecular Direct Arylation of Perfluorobenzenes. J Am Chem Soc 128:8754–8756. https://doi.org/10.1021/ja062509l

  21. U. S. Food and Drug Administration/Center for Biologics Evaluation and Research, CDER (2015) Guidance for Industry Q3D Elemental Impurities. Food Drug Adm 1–85

    Google Scholar 

  22. Usluer Ö, Abbas M, Wantz G, Vignau L, Hirsch L, Grana E, Brochon C, Cloutet E, Hadziioannou G (2014) Metal Residues in Semiconducting Polymers: Impact on the Performance of Organic Electronic Devices. ACS Macro Lett 3:1134–1138. https://doi.org/10.1021/mz500590d

  23. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible, Metal-Free Hydrogen Activation. Science 314:1124–1126. https://doi.org/10.1126/science.1134230

  24. Fontaine FG, Stephan DW (2017) On the Concept of Frustrated Lewis Pairs. Philos Trans R Soc A Math Phys Eng Sci 375:1–8. https://doi.org/10.1098/rsta.2017.0004

  25. Muetterties EL (1959) Synthesis of Aryldichloroboranes. J Am Chem Soc 81:2597–2597. https://doi.org/10.1021/ja01519a079

  26. Muetterties EL, Tebbe FN (1968) Dichloroboronation of Aromatic Hydrocarbons. Mechanistic Aspects. Inorg Chem 7:2663–2664. https://doi.org/10.1021/ic50070a048

  27. Muetterties EL (1967) The Chemistry of Boron and its Compounds. Wiley, New York

    Google Scholar 

  28. Muetterties EL (1960) Synthesis of Organoboranes. J Am Chem Soc 82:4163–4166. https://doi.org/10.1021/ja01501a010

  29. Bagutski V, Del Grosso A, Carrillo JA, Cade IA, Helm MD, Lawson JR, Singleton PJ, Solomon SA, Marcelli T, Ingleson MJ (2013) Mechanistic Studies into Amine-Mediated Electrophilic Arene Borylation and its Application in MIDA Boronate Synthesis. J Am Chem Soc 135:474–487. https://doi.org/10.1021/ja3100963

  30. Davis FA, Dewar MJS (1960) New Heteroaromatic Compounds. A Derivative of 10,9-Borathiarophenanthrene. J Org Chem 25:3511–3515. https://doi.org/10.1021/ja01015a039

  31. Genaev AM, Nagy SM, Salnikov GE, Shubin VG (2000) Intramolecular Borylation Reaction Catalyzed by Lewis Acid: Preparation of 1H-2,1-Benzazaborole Derivatives. Chem Commun 1587–1588. https://doi.org/10.1039/B003999N

  32. Ishida N, Moriya T, Goya T, Murakami M (2010) Synthesis of Pyridine-Borane Complexes via Electrophilic Aromatic Borylation. J Org Chem 75:8709–8712. https://doi.org/10.1021/jo101920p

  33. Del Grosso A, Pritchard RG, Muryn CA., Ingleson MJ, (2010) Chelate Restrained Boron Cations for Intermolecular Electrophilic Arene Borylation. Organometallics 29:241–249. https://doi.org/10.1021/om900893g

  34. Del Grosso A, Singleton PJ, Muryn CA, Ingleson MJ (2011) Pinacol Boronates by Direct Arene Borylation with Borenium Cations. Angew Chem Int Ed 50:2102–2106. https://doi.org/10.1002/anie.201006196

  35. Solomon SA, Del Grosso A, Clark ER, Bagutski V, McDouall JJW, Ingleson MJ (2012) Reactivity of Lewis Acid Activated Diaza- and Dithiaboroles in Electrophilic Arene Borylation. Organometallics 31:1908–1916. https://doi.org/10.1021/om201228e

  36. Del Grosso A, Helm MD, Solomon SA, Caras-Quintero D, Ingleson MJ (2011) Simple Inexpensive Boron Electrophiles for Direct Arene Borylation. Chem Commun 47:12459–12461. https://doi.org/10.1039/c1cc14226g

  37. Del Grosso A, Carrillo JA, Ingleson MJ (2015) Regioselective Electrophilic Borylation of Haloarenes. Chem Commun 51:2878–2881. https://doi.org/10.1039/c4cc10153g

  38. Prokofjevs A, Kampf JW, Vedejs E (2011) A Boronium Ion with Exceptional Electrophilicity. Angew Chem Int Ed 50:2098–2101. https://doi.org/10.1002/anie.201005663

  39. Hatakeyama T, Hashimoto S, Seki S, Nakamura M (2011) Synthesis of BN-Fused Polycyclic Aromatics via Tandem Intramolecular Electrophilic Arene Borylation. J Am Chem Soc 133:18614–18617. https://doi.org/10.1021/ja208950c

  40. Lepeltier M, Lukoyanova O, Jacobson A, Jeeva S, Perepichka DF (2010) New Azaborine-Thiophene Heteroacenes. Chem Commun 46:7007–7009. https://doi.org/10.1039/c0cc01963a

  41. Agou T, Kobayashi J, Kawashima T (2006) Syntheses, Structure, and Optical Properties of Ladder-Type Fused Azaborines. Org Lett 8:2241–2244. https://doi.org/10.1021/ol060539n

  42. Campbell PG, Marwitz AJV, Liu SY (2012) Recent Advances in Azaborine Chemistry. Angew Chemie - Int Ed 51:6074–6092. https://doi.org/10.1002/anie.201200063

  43. Taniguchi T, Yamaguchi S (2010) A Study of 1,2-Dihydro-1,2-azaborine in a π-Conjugated System. Organometallics 29:5732–5735. https://doi.org/10.1021/om100408m

  44. Qiang P, Sun Z, Wan M, Wang X, Thiruvengadam P, Bingi C, Wei W, Zhu W, Wu D, Zhang F (2019) Successive Annulation to Fully Zigzag-Edged Polycyclic Heteroaromatic Hydrocarbons with Strong Blue-Green Electroluminescence. Org Lett 21:4575–4579. https://doi.org/10.1021/acs.orglett.9b01487

  45. Geim AK, Novoselov KS (2007) The Rise of Graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

  46. Wang XY, Wang JY, Pei J (2015) BN Heterosuperbenzenes: Synthesis and Properties. Chem Eur J 21:3528–3539. https://doi.org/10.1002/chem.201405627

  47. Sivaev IB, Bregadze VI (2014) Lewis Acidity of Boron Compounds. Coord Chem Rev 270–271:75–88. https://doi.org/10.1016/j.ccr.2013.10.017

  48. Parks DJ, Piers WE (1996) Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters. J Am Chem Soc 118:9440–9441. https://doi.org/10.1021/ja961536g

  49. Rendler S, Oestreich M (2008) Conclusive Evidence for an SN2-Si Mechanism in the B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Compounds: Implications for the Related Hydrogenation. Angew Chem Int Ed 47:5997–6000. https://doi.org/10.1002/anie.200801675

  50. De Vries TS, Prokofjevs A, Harvey JN, Vedejs E (2009) Superelectrophilic Intermediates in Nitrogen-Directed Aromatic Borylation. J Am Chem Soc 131:14679–14687. https://doi.org/10.1021/ja905369n

  51. Prokofjevs A, Jermaks J, Borovika A, Kampf JW, Vedejs E (2013) Electrophilic C-H Borylation and Related Reactions of B-H Boron Cations. Organometallics 32:6701–6711. https://doi.org/10.1021/om400651p

  52. Yin Q, Klare HFT, Oestreich M (2017) Catalytic Friedel-Crafts C-H Borylation of Electron-Rich Arenes: Dramatic Rate Acceleration by Added Alkenes. Angew Chem Int Ed 56:3712–3717. https://doi.org/10.1002/anie.201611536

  53. Kitani F, Takita R, Imahori T, Uchiyama M (2017) Catalytic Aromatic Borylation via in situ-Generated Borenium Species. Heterocycles 95:158–166. https://doi.org/10.3987/COM-16-S(S)43

  54. Gribble GW, Lord PD, Skotnicki J, Dietz SE, Eaton JT, Johnson J (1974) Reactions of Sodium Borohydride in Acidic Media. I. Reduction of Indoles and Alkylation of Aromatic Amines with Carboxylic Acids. J Am Chem Soc 96:7812–7814. https://doi.org/10.1021/ja00832a035

  55. Jayaraman A, Powell-Davies H, Fontaine F-G (2019) Revisiting the Reduction of Indoles by Hydroboranes: A Combined Experimental and Computational Study. Tetrahedron 75:2118–2127. https://doi.org/10.1016/j.tet.2019.02.048

  56. Wakamiya A, Yamaguchi S (2015) Designs of Functional π-Electron Materials Based on the Characteristic Features of Boron. Bull Chem Soc Jpn 88:1357–1377. https://doi.org/10.1246/bcsj.20150151

  57. Maier AFG, Tussing S, Schneider T, Flörke U, Qu, Z-W, Grimme S, Paradies J (2016) Frustrated Lewis Pair Catalyzed Dehydrogenative Oxidation of Indolines and Other Heterocycles. Angew Chem Int Ed 55:12219–12223. https://doi.org/10.1002/anie.201606426

  58. Zhang Q, Qin S, Yin Y, Hu J, Zhang H (2018) Boron(III)-Catalyzed C2-Selective C−H Borylation of Heteroarenes. Angew Chem Int Ed 57:14891–14895. https://doi.org/10.1002/anie.201808590

  59. Baker RT, Nguyen P, Marder TB, Westcott SA (1995) Transition Metal Catalyzed Diboration of Vinylarenes. Angew Chem Int Ed 34:1336–1338. https://doi.org/10.1002/anie.199513361

  60. Pubill-Ulldemolins C, Bonet A, Bo C, Gulyás H, Fernández E (2012) Activation of Diboron Reagents with Brønsted Bases and Alcohols: An Experimental and Theoretical Perspective of the Organocatalytic Boron Conjugate Addition Reaction. Chem Eur J 18:1121–1126. https://doi.org/10.1002/chem.201102209

  61. Sanz X, Lee GM, Pubill-Ulldemolins C, Bonet A, Gulyás H, Westcott SA, Bo C, Fernández E (2013) Metal-Free Borylative Ring-Opening of Vinyl Epoxides and Aziridines. Org Biomol Chem 11:7004–7010. https://doi.org/10.1039/c3ob41328d

  62. Furukawa S, Kobayashi J, Kawashima T (2009) Development of a Sila-Friedel-Crafts Reaction and Its Application to the Synthesis of Dibenzosilole Derivatives. J Am Chem Soc 131:14192–14193. https://doi.org/10.1021/ja906566r

  63. Furukawa S, Kobayashi J, Kawashima T (2010) Application of the Sila-Friedel-Crafts Reaction to the Synthesis of π-Extended Silole Derivatives and their Properties. Dalton Trans 39:9329–9336. https://doi.org/10.1039/c0dt00136h

  64. Curless LD, Ingleson MJ (2014) B(C6F5)3 - Catalyzed Synthesis of Benzofused-Siloles. Organometallics 33:7241–7246. https://doi.org/10.1021/om501033p

  65. Curless LD, Clark ER, Dunsford JJ, Ingleson MJ (2014) E-H (E = R3Si or H) Bond Activation by B(C6F5)3 and Heteroarenes; Competitive Dehydrosilylation, Hydrosilylation and Hydrogenation. Chem Commun 50:5270–5272. https://doi.org/10.1039/c3cc47372d

  66. Ma Y, Wang B, Zhang L, Hou Z (2016) Boron-Catalyzed Aromatic C−H Bond Silylation with Hydrosilanes. J Am Chem Soc 138:3663–3666. https://doi.org/10.1021/jacs.6b01349

  67. Han Y, Zhang S, He J, Zhang Y (2018) Switchable C-H Silylation of Indoles Catalyzed by a Thermally Induced Frustrated Lewis Pair. ACS Catal 8:8765–8773. https://doi.org/10.1021/acscatal.8b01847

  68. Dureen MA, Stephan DW (2009) Terminal Alkyne Activation by Frustrated and Classical Lewis Acid/Phosphine Pairs. J Am Chem Soc 131:8396–8397. https://doi.org/10.1021/ja903650w

  69. Moemming CM, Froemel S, Kehr G, Fröhlich R, Grimme S, Erker G (2009) Reactions of an Intramolecular Frustrated Lewis Pair with Unsaturated Substrates: Evidence for a Concerted Olefin Addition Reaction. J Am Chem Soc 131:12280–12289. https://doi.org/10.1021/ja903511s

  70. Jiang C, Blacque O, Berke H (2010) Activation of Terminal Alkynes by Frustrated Lewis Pairs. Organometallics 29:125–133. https://doi.org/10.1021/om9008636

  71. Menard G, Stephan DW (2012) C-H Activation of Isobutylene Using Frustrated Lewis Pairs: Aluminum and Boron sigma-Allyl Complexes. Angew Chem Int Ed 51:4409–4412. https://doi.org/10.1002/anie.201200328

  72. Voss T, Mahdi T, Otten E, Fröhlich R, Kehr G, Stephan DW, Erker G (2012) Frustrated Lewis Pair Behavior of Intermolecular Amine/B(C6F5)3 Pairs. Organometallics 31:2367–2378. https://doi.org/10.1021/om300017u

  73. Iashin V, Chernichenko K, Pápai I, Repo T (2016) Atom-Efficient Synthesis of Alkynylfluoroborates Using BF3-Based Frustrated Lewis Pairs. Angew Chem Int Ed 55:14146–14150. https://doi.org/10.1002/anie.201608520

  74. Chernichenko K, Madarász Á, Pápai I, Nieger M, Leskelä M, Repo T (2013) A Frustrated-Lewis-Pair Approach to Catalytic Reduction of Alkynes to cis-Alkenes. Nat Chem 5:718–723. https://doi.org/10.1038/nchem.1693

  75. Lu G, Zhao L, Li H, Huang F, Wang Z-X (2010) Reversible Heterolytic Methane Activation of Metal-Free Closed-Shell Molecules: A Computational Proof-of-Principle Study. Eur J Inorg Chem 2254–2260. https://doi.org/10.1002/ejic.201000242

  76. Frömel S, Daniliuc CG, Bannwarth C, Grimme S, Bussmann K, Kehr G, Erker G (2016) Indirect Synthesis of a Pair of Formal Methane Activation Products at a Phosphane/Borane Frustrated Lewis Pair. Dalton Trans 45:19230–19233. https://doi.org/10.1039/c6dt04206f

  77. Rochette É, Courtemanche MA, Fontaine F-G (2017) Frustrated Lewis Pair Mediated Csp3−H Activation. Chem Eur J 23:3567–3571. https://doi.org/10.1002/chem.201700390

  78. Koester R, Larbig W, Rotermund GW (1965) Pyrolyse von Alkyl- und Cycloalkylboranen. Liebigs Ann Chem 682:21–48. https://doi.org/10.1002/jlac.19656820103

  79. Goldfuss B, Knochel P, Bromm LO, Knapp K (2000) C−H Activation by Direct Borane-Hydrocarbon Dehydrogenation: Kinetic and Thermodynamic Aspects. Angew Chem Int Ed 39:4136–4139. https://doi.org/10.1002/1521-3773(20001117)39:22<4136::AID-ANIE4136>3.0.CO;2-F

  80. Légaré M-A, Courtemanche M-A, Rochette É, Fontaine F-G (2015) Metal-Free Catalytic C-H Bond Activation and Borylation of Heteroarenes. Science 349:513–516. https://doi.org/10.1126/science.aab3591

  81. Lavergne JL, Jayaraman A, Castro LCM, Rochette É, Fontaine F-G (2017) Metal-Free Borylation of Heteroarenes Using Ambiphilic Aminoboranes: On the Importance of Sterics in Frustrated Lewis Pair C−H Bond Activation. J Am Chem Soc 139:14714–14723. https://doi.org/10.1021/jacs.7b08143

  82. Chernichenko K, Lindqvist M, Kótai B, Nieger M, Sorochkina K, Pápai I, Repo T  (2016) Metal-Free sp2-C−H Borylation as a Common Reactivity Pattern of Frustrated 2-Aminophenylboranes. J Am Chem Soc 138:4860–4868. https://doi.org/10.1021/jacs.6b00819

  83. Chernichenko K, Nieger M, Leskelä M, Repo T (2012) Hydrogen Activation by 2-Boryl-N-dialkyanilines: a Revision of Piers Ansa-Aminoborane. Dalton Trans 31:9029–9032. https://doi.org/10.1039/c0dt01716g

  84. Quirós MT, Macdonald C, Angulo J, Muñoz MP (2016) Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes. J Vis Exp 2016:1–13. https://doi.org/10.3791/54499

  85. Rochette É, Bouchard N, Légaré Lavergne J, Matta CF, Fontaine F-G (2016) Spontaneous Reduction of a Hydroborane To Generate a B−B Single Bond by the Use of a Lewis Pair. Angew Chem Int Ed 55:12722–12726. https://doi.org/10.1002/anie.201605645

  86. Rochette É, Boutin H, Fontaine F-G (2017) Frustrated Lewis Pair Catalyzed S−H Bond Borylation. Organometallics 36:2870–2876. https://doi.org/10.1021/acs.organomet.7b00346

  87. Molander GA, Yun CS, Ribagorda M, Biolatto B (2003) B-alkyl Suzuki-Miyaura Cross-Coupling Reactions with Air-Stable Potassium Alkyltrifluoroborates. J Org Chem 68:5534–5539. https://doi.org/10.1021/jo0343331

  88. Jayaraman A, Castro LCM, Fontaine F-G (2018) Practical and Scalable Synthesis of Borylated Heterocycles Using Bench-Stable Precursors of Metal-Free Lewis Pair Catalysts. Org Process Res Dev 22:1489–1499. https://doi.org/10.1021/acs.oprd.8b00248

  89. Bouchard N, Fontaine F-G (2019) Alkylammoniotrifluoroborate Functionalized Polystyrenes: Polymeric Pre-Catalysts for the Metal-Free Borylation of Heteroarenes. Dalton Trans 48:4846–4856. https://doi.org/10.1039/c9dt00484j

  90. Ren H, Zhou YP, Bai Y, Cui C, Driess M (2017) Cobalt-Catalyzed Regioselective Borylation of Arenes: N-Heterocyclic Silylene as an Electron Donor in the Metal-Mediated Activation of C−H Bonds. Chem Eur J 23:5663–5667. https://doi.org/10.1002/chem.201605937

  91. Rochette É, Desrosiers V, Soltani Y, Fontaine F-G (2019) Isodesmic C−H Borylation: Perspectives and Proof of Concept of Transfer Borylation Catalysis. J Am Chem Soc 141:12305–12311. https://doi.org/10.1021/jacs.9b04305

  92. Ollivier C, Renaud P (2001) Organoboranes as a Source of Radicals. Chem Rev 101:3415–3434. https://doi.org/10.1021/cr010001p

  93. Ménard G, Hatnean JA, Cowley HJ, Lough AJ, Rawson JM, Stephan DW (2013) C-H Bond Activation by Radical Ion Pairs Derived from R3P/Al(C6F5)3 Frustrated Lewis Pairs and N2O. J Am Chem Soc 135:6446–6449. https://doi.org/10.1021/ja402964h

  94. Liu L, (Leo), Cao LL, Shao Y, Ménard G, Stephan DW (2017) A Radical Mechanism for Frustrated Lewis Pair Reactivity. Chem 3:259–267. https://doi.org/10.1016/j.chempr.2017.05.022

  95. Soltani Y, Dasgupta A, Gazis TA, Ould DMC, Richards E, Slater B, Stefkova K, Vladimirov VY, Wilkins LC, Willcox D, Melen RL (2020) Radical Reactivity of Frustrated Lewis Pairs with Diaryl Esters. Cell Reports Phys Sci 1:100016. https://doi.org/10.1016/j.xcrp.2020.100016

  96. Oestreich M (2009) The Mizoroki – Heck Reaction. Wiley, New York

    Google Scholar 

  97. Nykaza TV, Li G, Yang J, Luzung MR, Radosevich AT (2020) PIII/PV=O Catalyzed Cascade Synthesis of N-Functionalized Azaheterocycles. Angew Chem Int Ed 59:4505–4510. https://doi.org/10.1002/anie.201914851

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric-Georges Fontaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soltani, Y., Fontaine, FG. (2021). FLP-Mediated C–H-Activation. In: Chris Slootweg, J., Jupp, A.R. (eds) Frustrated Lewis Pairs. Molecular Catalysis, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-58888-5_4

Download citation

Publish with us

Policies and ethics