Skip to main content

Frustrated Lewis Pair Catalyzed Asymmetric Reactions

  • Chapter
  • First Online:
Frustrated Lewis Pairs

Part of the book series: Molecular Catalysis ((MOLCAT,volume 2))

Abstract

As a lately emerging area, frustrated Lewis pair chemistry provides the most effective way for metal-free catalytic reductions, and a wide range of unsaturated compounds have been successfully reduced. However, the asymmetric catalytic reduction is still in its initial stage, and some formidable challenges still remain. The development of highly effective chiral FLP catalysts and their applications in asymmetric catalysis are two very important subjects in this field. This chapter will summarize the advances for chiral FLP catalysts and metal-free asymmetric reductions including hydrogenations, Piers-type hydrosilylations, and transfer hydrogenations in the past six years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

Ar:

Aryl

Atm:

Atmosphere

Barton’s base:

2-tert-butyl-1,1,3,3-tetramethylguanidine

Bn:

Benzyl

Boc:

t-Butyloxy carbonyl

Bu:

Butyl

Cat.:

Catalyst

Cbz:

Benzyloxycarbonyl

Conv.:

Conversion

Cy:

Cyclohexyl

DCM:

Dichloromethane

DFT:

Density Functional Theory

DIBAL-H:

Diisobutyl aluminium hydride

DMF:

Dimethylformamide

DMS:

Dimethyl sulfide

dr:

Diastereomeric ratio

ee:

Enantiomeric excess

equiv.:

Equivalent(s)

Et:

Ethyl

FLPs:

Frustrated Lewis pairs

LA:

Lewis acid

LB:

Lewis base

Me:

Methyl

Mes:

2,4,6-Trimethylphenyl

NHC:

N-heterocyclic carbene

Np:

Naphthyl

PCC:

Pyridinium chlorochromate

Ph:

Phenyl

Piers’ Borane:

HB(C6F5)2

Pin:

Pinacol

PG:

Protecting group

PMHS:

Polymethylhydrosiloxane

PMP1:

p-Methoxyphenyl

PMP2:

1,2,2,6,6-Pentamethylpiperidine

Pr:

Propyl

Rt:

Room temperature

TBAF:

Tetrabutylammonium fluoride

Tf:

Trifluoromethylsulfonate

THF:

Tetrahydrofuran

TMS:

Trimethylsilyl

Tol:

Tolyl

Ts:

Tosyl

References

  1. Welch GC et al (2006) Reversible, Metal-Free Hydrogen Activation. Science 314(5802):1124–1126. https://doi.org/10.1126/science.1134230

  2. Kenward AL, Piers WE (2008) Heterolytic H2 Activation by Nonmetals. Angew Chem Int Ed 47:38–41. https://doi.org/10.1002/anie.200702816

  3. Stephan DW (2009) Frustrated Lewis Pairs: a New Strategy to Small Molecule Activation and Hydrogenation Catalysis. Dalton Trans 3129–3136. https://doi.org/10.1039/B819621D

    Google Scholar 

  4. Stephan DW, Erker G (2010) Frustrated Lewis Pairs: Metal-Free Hydrogen Activation and More. Angew Chem Int Ed 49:46–76.  https://doi.org/10.1002/anie.200903708

  5. Erker G (2011) Organometallic Frustrated Lewis Pair Chemistry. Dalton Trans 40:7475–7483. https://doi.org/10.1039/C1DT10152H

  6. Soós T (2011) Design of Frustrated Lewis Pair Catalysts for Metal-Free and Selective Hydrogenation. Pure Appl Chem 83:667–675. https://doi.org/10.1351/PAC-CON-11-01-02

  7. Erker G (2012) Frustrated Lewis Pairs: Some Recent Developments. Pure Appl Chem 84:2203–2217. https://doi.org/10.1351/PAC-CON-12-04-07

  8. Paradies J (2014) Metal-Free Hydrogenation of Unsaturated Hydrocarbons Employing Molecular Hydrogen. Angew Chem Int Ed 53:3552–3557. https://doi.org/10.1002/anie.201309253

  9. Stephan DW, Erker G (2015) Frustrated Lewis Pair Chemistry: Development and Perspectives. Angew Chem Int Ed 54:6400–6441. https://doi.org/10.1002/anie.201409800

  10. Oestreich M, Hermeke J, Mohr J (2015) A Unified Survey of Si–H and H–H Bond Activation Catalysed by Electron-Deficient Boranes. Chem Soc Rev 44:2202–2220. https://doi.org/10.1039/C4CS00451E

  11. Stephan DW (2015) Frustrated Lewis Pairs: From Concept to Catalysis. Acc Chem Res 48:306–316. https://doi.org/10.1021/ar500375j

  12. Scott DJ, Fuchter MJ, Ashley AE (2017) Designing Effective “Frustrated Lewis Pair” Hydrogenation Catalysts. Chem Soc Rev 46:5689–5700. https://doi.org/10.1039/C7CS00154A

  13. Liu Y, Du H (2014) Frustrated Lewis Pair Catalyzed Asymmetric Hydrogenation. Acta Chim Sinica 72:771–777. https://doi.org/10.6023/A14040344

  14. Feng X, Du H (2014) Metal-Free Asymmetric Hydrogenation and Hydrosilylation Catalyzed by Frustrated Lewis Pairs. Tetrahedron Lett 55:6959–6964. https://doi.org/10.1016/j.tetlet.2014.10.138

  15. Shi L, Zhou Y-G (2015) Enantioselective Metal-Free Hydrogenation Catalyzed by Chiral Frustrated Lewis Pairs. ChemCatChem 7:54–56. https://doi.org/10.1002/cctc.201402838

  16. Wilkins LC, Melen RL (2016) Enantioselective Main Group Catalysis: Modern Catalysts for Organic Transformations. Coord Chem Rev 324:123–139. https://doi.org/10.1016/j.ccr.2016.07.011

  17. Paradies J (2018) Chiral Borane-Based Lewis Acids for Metal Free Hydrogenations. Top Organomet Chem 62:193–216. https://doi.org/10.1007/3418_2016_173

  18. Meng W, Feng X, Du H (2018) Frustrated Lewis Pairs Catalyzed Asymmetric Metal-Free Hydrogenations and Hydrosilylations. Acc Chem Res 51:191–201. https://doi.org/10.1021/acs.accounts.7b00530

  19. Chen D, Klankermayer J (2008) Metal-Free Catalytic Hydrogenation of Imines with Tris(perfluorophenyl)borane. Chem Commun 18:2130–2131. https://doi.org/10.1039/B801806E

  20. Chen D, Wang Y, Klankermayer J (2010) Enantioselective Hydrogenation with Chiral Frustrated Lewis Pairs. Angew Chem Int Ed 49:9475–9478. https://doi.org/10.1002/anie.201004525

  21. Sumerin V, Chernichenko K, Nieger M, Leskelä M, Rieger B, Repo T (2011) Highly Active Metal-Free Catalysts for Hydrogenation of Unsaturated Nitrogen-Containing Compounds. Adv Synth Catal 353:2093–2110. https://doi.org/10.1002/adsc.201100206

  22. Ghattas G, Chen D, Pan F, Klankermayer J (2012) Asymmetric Hydrogenation of Imines with a Recyclable Chiral Frustrated Lewis Pair Catalyst. Dalton Trans 41:9026–9028. https://doi.org/10.1039/C2DT30536D

  23. Heiden ZM, Stephan DW (2011) Metal-Free Diastereoselective Catalytic Hydrogenations of Imines Using B(C6F5)3. Chem Commun 47:5729–5731. https://doi.org/10.1039/C1CC10438A

  24. Chen D, Leich V, Pan F, Klankermayer J (2012) Enantioselective Hydrosilylation with Chiral Frustrated Lewis Pairs. Chem Eur J 18:5184–5187. https://doi.org/10.1002/chem.201200244

  25. Mewald M, Fröhlich R, Oestreich M (2011) An Axially Chiral, Electron-Deficient Borane: Synthesis, Coordination Chemistry, Lewis Acidity, and Reactivity. Chem Eur J 17:9406–9414. https://doi.org/10.1002/chem.201100724

  26. Mewald M, Oestreich M (2012) Illuminating the Mechanism of the Borane-Catalyzed Hydrosilylation of Imines with Both an Axially Chiral Borane and Silane. Chem Eur J 18:14079–14084. https://doi.org/10.1002/chem.201202693

  27. Parks DJ, Piers WE, Yap GPA (1998) Synthesis, Properties, and Hydroboration Activity of the Highly Electrophilic Borane Bis(pentafluorophenyl)borane, HB(C6F5)2. Organometallics 17:5492–5503. https://doi.org/10.1021/om980673e

  28. Liu Y, Du H (2013) Chiral Dienes as “Ligands” for Borane-Catalyzed Metal-Free Asymmetric Hydrogenation of Imines. J Am Chem Soc 135:6810–6813. https://doi.org/10.1021/ja4025808

  29. Cao Z, Du H (2010) Development of Binaphthyl-Based Chiral Dienes for Rh(I)-Catalyzed Asymmetrc Arylation of N,N-Dimethylsulamoyl-Protected Aldimines. Org Lett 12:2602–2605. https://doi.org/10.1021/ol1008087

  30. Lindqvist M, Borre K, Axenov K, Kótai B, Nieger M, Leskelä M, Pápai I, Repo T (2015) Chiral Molecular Tweezers: Synthesis and Reactivity in Asymmetric Hydrogenation. J Am Chem Soc 137:4038–4041. https://doi.org/10.1021/ja512658m

  31. Wang X, Kehr G, Daniliuc CG, Erker G (2014) Internal Adduct Formation of Active Intramolecular C4-Bridged Frustrated Phosphane/Borane Lewis Pairs. J Am Chem Soc 136:3293–3303. https://doi.org/10.1021/ja413060u

  32. Ye K-Y, Wang X, Daniliuc CG, Kehr G, Erker G (2017) A Ferrocene-Based Phosphane/Borane Frustrated Lewis Pair for Asymmetric Imine Reduction. Eur J Inorg Chem 368–371. https://doi.org/10.1002/ejic.201600834

  33. Liu X, Liu T, Meng W, Du, H (2018) Asymmetric Hydrogenation of Imines with Chiral Alkene-Derived Boron Lewis Acids. Org Biomol Chem 16:8686–8689. https://doi.org/10.1039/C8OB02446D

  34. Tu X-S, Zeng N‐N, Li R‐Y, Zhao Y‐Q, Xie D‐Z, Peng Q, Wang X‐C (2018) C2-Symmetric Bicyclic Bisborane Catalysts: Kinetic or Thermodynamic Products of a Reversible Hydroboration of Dienes. Angew Chem Int Ed 57:15096–15100. https://doi.org/10.1002/anie.201808289

  35. Lam J, Günther BAR, Farrell JM, Eisenberger P, Bestvater BP, Newman PD, Melen RL, Crudden CM, Stephan DW (2016) Chiral Carbene-Borane Adducts: Precursors for Borenium Catalysts for Asymmetric FLP Hydrogenations. Dalton Trans 45:15303–15316. https://doi.org/10.1039/C6DT02202B

  36. Mercea DM, Howlett MG, Piascik AD, Scott DJ, Steven A, Ashley AE, Fuchter MJ (2019) Enantioselective Reduction of N-Alkyl Ketimines with Frustrated Lewis Pair Catalysis Using Chiral Borenium Ions. Chem Commun 55:7077–7080. https://doi.org/10.1039/C9CC02900A

  37. Zhu X, Du H (2015) A Highly Stereoselective Metal-Free Hydrogenation of Diimines for the Synthesis of Cis-Vicinal Diamines. Org Lett 17:3106–3109. https://doi.org/10.1021/acs.orglett.5b01380

  38. Wei S, Feng X, Du H (2016) A Metal-Free Hydrogenation of 3-Substituted 2H-1,4-Benzoxazines. Org Biomol Chem 14:8026–8029. https://doi.org/10.1039/C6OB01556E

  39. Mahdi T, del Castillo JN, Stephan DW (2013) Metal-Free Hydrogenation of N-Based Heterocycles. Organometallics 32:1971–1978. https://doi.org/10.1021/om4000727

  40. Liu Y, Du H (2013) Metal-Free Borane-Catalyzed Highly Stereoselective Hydrogenation of Pyridines. J Am Chem Soc 135:12968–12971. https://doi.org/10.1021/ja406761j

  41. Wang W, Feng X, Du H (2016) Borane-Catalyzed Metal-Free Hydrogenation of 2,7-Disubstituted 1,8-Naphthyridines. Org Biomol Chem 14:6683–6686. https://doi.org/10.1039/C6OB01172A

  42. Zhang Z, Du H (2015) A Highly cis-Selective and Enantioselective Metal-Free Hydrogenation of 2,3-Disubstituted Quinoxalines. Angew Chem Int Ed 54:623–626. https://doi.org/10.1002/anie.201409471

  43. Zhang Z, Du H (2015) Cis-Selective and Highly Enantioselective Hydrogenation of 2,3,4-Trisubstituted Quinolines. Org Lett 17:2816–2819. https://doi.org/10.1021/acs.orglett.5b01240

  44. Zhang Z, Du H (2015) Enantioselective Metal-Free Hydrogenations of Disubstituted Quinolines. Org Lett 17:6266–6269. https://doi.org/10.1021/acs.orglett.5b03307

  45. Han C, Zhang E, Feng X, Wang S, Du H (2018) B(C6F5)3-Catalyzed Metal-Free Hydrogenations of 2-Quinolinecarboxylates. Tetrahedron Lett 59:1400–1403. https://doi.org/10.1016/j.tetlet.2018.02.057

  46. Li X, Tian J‐J, Liu N, Tu X‐S, Zeng N‐N, Wang X‐C (2019) Spiro-Bicyclic Bisborane Catalysts for Metal-Free Chemoselective and Enantioselective Hydrogenation of Quinolines. Angew Chem Int Ed 58:4664–4668. https://doi.org/10.1002/anie.201900907

  47. Wang H, Fröhlich R, Kehr G, Erker G (2008) Heterolytic Dihydrogen Activation with the 1,8-Bis(diphenylphosphino)naphthalene/B(C6F5)3 Pair and Its Application for Metal-Free Catalytic Hydrogenation of Silyl Enol Ethers. Chem Commun 5966–5968. https://doi.org/10.1039/B813286K

  48. Wei S, Du H (2014) A Highly Enantioselective Hydrogenation of Silyl Enol Ethers Catalyzed by Chiral Frustrated Lewis Pairs. J Am Chem Soc 136:12261–12264. https://doi.org/10.1021/ja507536n

  49. Ren X, Li G, Wei S, Du H (2015) Facile Development of Chiral Alkenylboranes from Chiral Diynes for Asymmetric Hydrogenation of Silyl Enol Ethers. Org Lett 17:990–993. https://doi.org/10.1021/acs.orglett.5b00085

  50. Mahdi T, Stephan DW (2014) Enabling Catalytic Ketone Hydrogenation by Frustrated Lewis Pairs. J Am Chem Soc 136:15809–15812. https://doi.org/10.1021/ja508829x

  51. Scott DJ, Fuchter MJ, Ashley AE (2014) Nonmetal Catalyzed Hydrogenation of Carbonyl Compounds. J Am Chem Soc 136: 15813–15816. https://doi.org/10.1021/ja5088979

  52. Gao B, Feng X, Meng W, Du H (2020) Asymmetric Hydrogenations of Ketones and Enones with Chiral Lewis Base Derived Frustrated Lewis Pairs. Angew Chem Int Ed 59:4498–4504. https://doi.org/10.1002/anie.201914568

  53. Parks DJ, Piers WE (1996) Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters. J Am Chem Soc 118:9440–9441. https://doi.org/10.1021/ja961536g

  54. Zhu X, Du H (2015) A Chiral Borane Catalyzed Asymmetric Hydrosilylation of Imines. Org Biomol Chem 13:1013–1016. https://doi.org/10.1039/C4OB02419B

  55. Ren X, Du H (2016) Chiral Frustrated Lewis Pairs Catalyzed Highly Enantioselective Hydrosilylations of 1,2-Dicarbonyl Compounds. J Am Chem Soc 138:810–813. https://doi.org/10.1021/jacs.5b13104

  56. Süsse L, Hermeke J, Oestreich M (2016) The Asymmetric Piers Hydrosilylation. J Am Chem Soc 138:6940−6943. https://doi.org/10.1021/jacs.6b03443

  57. Liu X, Wang Q, Han C, Feng X, Du H (2019) Chiral Frustrated Lewis Pairs Catalyzed Highly Enantioselective Hydrosilylations of Ketones. Chin J Chem 37:663–666. https://doi.org/10.1002/cjoc.201900121

  58. Wang Q, Han C, Feng X, Du H (2019) Chiral Spiro Dienes Derived Boranes for Asymmetric Hydrosilylation of Ketones. Chin J Org Chem 39:2257–2263. https://doi.org/10.6023/cjoc201903076

  59. Ren X, Han C, Feng X, Du H (2017) A Borane-Catalyzed Metal-Free Hydrosilylation of Chromones and Flavones. Synlett 28:2421–2424. https://doi.org/10.1055/s-0036-1588474

  60. Pan Y, Chen C, Xu X, Zhao H, Han J, Li H, Xu L, Fan Q, Xiao J (2018) Metal-Free Tandem Cyclization/Hydrosilylation to Construct Tetrahydroquinoxalines. Green Chem 20:403–411. https://doi.org/10.1039/C7GC03095A

  61. Li S, Li G, Meng W, Du H (2016) A Frustrated Lewis Pair Catalyzed Asymmetric Transfer Hydrogenation of Imines Using Ammonia Borane. J Am Chem Soc 138:12956–12962. https://doi.org/10.1021/jacs.6b07245

  62. Li S, Meng W, Du H (2017) Asymmetric Transfer Hydrogenations of 2,3-Disubstituted Quinoxalines with Ammonia Borane. Org Lett 19:2604–2606. https://doi.org/10.1021/acs.orglett.7b00935

  63. Zhao W, Feng Q, Yang J, Du H (2019) Asymmetric Transfer Hydrogenations of β-N-Substituted Enamino Esters with Ammonia Borane. Tetrahedron Lett 60:1193–1196. https://doi.org/10.1016/j.tetlet.2019.03.060

  64. Wang Q, Chem J, Feng X, Du H (2018) B(C6F5)3-Catalyzed Transfer Hydrogenations of Imines with Hantzsch Esters. Org Biomol Chem 16:1448–1451. https://doi.org/10.1039/C8OB00023A

  65. Shang M, Wang X, Moh Koo S, Youn J, Chan JZ, Yao W, Hastings BT, Wasa M (2017) Frustrated Lewis Acid/Brønsted Base Catalysts for Direct Enantioselective α-Amination of Carbonyl Compounds. J Am Chem Soc 139:95−98. https://doi.org/10.1021/jacs.6b11908

  66. Chan JZ, Yao W, Hastings BT, Lok CK, Wasa M (2016) Direct Mannich-Type Reactions Promoted by Frustrated Lewis Acid/Brønsted Base Catalysts. Angew Chem Int Ed 55:13877–13881. https://doi.org/10.1002/anie.201608583

  67. Shang M, Cao M, Wang Q, Wasa M (2017) Enantioselective Direct Mannich-Type Reactions Catalyzed by Frustrated Lewis Acid/Brønsted Base Complexes. Angew Chem Int Ed 56:13338–13341. https://doi.org/10.1002/anie.201708103

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, X., Meng, W., Du, H. (2021). Frustrated Lewis Pair Catalyzed Asymmetric Reactions. In: Chris Slootweg, J., Jupp, A.R. (eds) Frustrated Lewis Pairs. Molecular Catalysis, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-58888-5_2

Download citation

Publish with us

Policies and ethics