Skip to main content

A Discussion of Three Major Paradigms in the Earth and Planetary Sciences

  • Chapter
  • First Online:
Geoforming Mars
  • 397 Accesses

Abstract

In this chapter I am relating three major concepts (paradigms), to the operation of our very habitable planet. The continental drift/plate tectonics paradigm is obvious to geo-students and informed citizens today but the concept had a difficult time getting accepted. The time frame for maturation was about 1912 for conception of the idea to about 1968 for general acceptance. The Milankovitch model for climate oscillations on planet Earth had a similar acceptance experience. The time frame for this major concept was about 1910 for initiation with general acceptance occurring about 1976. Thus, it appears that acceptance of major new ideas in the Earth and Planetary Sciences takes about 50–60 years. It is interesting to note that Milankovitch did many calculations on climate variation for planet Mars as well as for Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References Cited

  • Andrews-Hanna, J. C., Zuber, M. T., & Banerdt, W. B. (2008). The Borealis basin and the origin of the martian crustal dichotomy. Nature, 453, 1212–1215.

    Article  Google Scholar 

  • Arkani-Hamed, J. (2009). Did tidal deformation power the core dynamo of Mars? Icarus, 201, 31–43.

    Article  Google Scholar 

  • Bercovici, D., & Karato, S. (2003). Whole mantle convection and the transition zone. Nature, 425, 39–44. https://doi.org/10.1038/nature01918.

    Article  Google Scholar 

  • Berger, A., Loutre, M. F., & Dehant, V. (1989). Pre-quaternary Milankovitch frequencies. Nature, 342, 133.

    Article  Google Scholar 

  • Bills, B. G., & Ray, R. D. (1999). Lunar orbital evolution: A synthesis of recent results. Geophysical Research Letters, 26, 3045–3048.

    Article  Google Scholar 

  • Bostrom, R. C. (1971). Westward displacement of the lithosphere. Nature, 234, 536–538.

    Article  Google Scholar 

  • Bostrom, R. C. (1976). Westwanderung and the lunar tidal couple: Modulation of convection by tidal stress. The Moon, 15, 109–117.

    Article  Google Scholar 

  • Bostrom, R. C. (2000). Tectonic consequences of earth’s rotation (266 p). Oxford: Oxford University Press.

    Google Scholar 

  • Buchan, J., Marquardt, H., Speziale, S., Kawazoe, T., Boffa-Ballaran, T., & Kurnosov, A. (2018). High-pressure single-crystal elasticity of wadsleyite and the seismic signature of water in the shallow transition zone. Earth and Planetary Science Letters, 498, 77–87. https://doi.org/10/1016/j.espl.2018.06.027.

    Article  Google Scholar 

  • Burke, K. (2011). Plate tectonics, the Wilson cycle, and mantle plumes: Geodynamics from the top. Annual Reviews of the Earth and Planetary Sciences, 39, 1–29.

    Article  Google Scholar 

  • Carr, M., & Head, J. (2019). Mars: Formation and fate of a frozen Hesperian ocean. Icarus, 319, 433–434.

    Article  Google Scholar 

  • Cirton, R. I., Manga, M., & Hemingway, D. J. (2018). Timing of oceans on Mars from shoreline deformation. Nature, 555, 643–646.

    Article  Google Scholar 

  • Condie, K. C., & Sloan, R. E. (1998). Origin and evolution of earth: Principles of historical geology (p. 498). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Cross, T. A., & Pilger, R. H. (1982). Controls of subduction geometry location of magmatic arcs, and tectonics of arc and back-arc regions. Geological Society of America Bulletin, 93, 545–562.

    Article  Google Scholar 

  • Cuk, M. (2007). Excitation of lunar eccentricity by planetary resonances. Science, 318, 244.

    Article  Google Scholar 

  • Davies, G. F. (1992). On the emergence of plate tectonics. Geology, 20, 663–966.

    Article  Google Scholar 

  • Denevi, B. (2017). The new moon. Physics Today, 70(June), 38–44.

    Article  Google Scholar 

  • Doglioni, C. (1994). Foredeeps versus subduction zones. Geology, 22, 271–274.

    Article  Google Scholar 

  • Doglioni, C., & Anderson, D. L. (2015). Top driven asymmetric mantle convection. Geological Society of America Special Paper, 514, 51–63.

    Article  Google Scholar 

  • Doglioni, C., & Panza, G. (2015). Polarized plate tectonics. Advances in Geophysics, 56, 1–167.

    Article  Google Scholar 

  • Doglioni, C., Ismail-Zadeh, A., Panza, G., & Riguzzi, F. (2011). Lithosphere-asthenosphere viscosity contrast and decoupling. Physics of the Earth and Planetary Interiors, 189, 1–8.

    Article  Google Scholar 

  • Fang, Q., Wu, H., Wang, X., Yang, T., Li, H., & Zhang, S. (2018). Astronomical cycles in the Serpukhovian-Moscovian (Carboniferous) maring sequence, South China and their implications for geoshronology and icehouse dynamics. Journal of Asian Earth Sciences, 156, 302–315. https://doi.org/10.1016/j.jseaes.2018.02.001.

    Article  Google Scholar 

  • Fei, H., Yamazaki, D., Sakurai, M., Miyajima, N., Ohfuji, H., Katsura, T., & Yamamoto, T. (2017). A nearly water-saturated mantle transition zone inferred from mineral viscosity. Science Advances, 3(6), e1603024. https://doi.org/10.1126/sciadv.1603024.

    Article  Google Scholar 

  • Feulner, G. (2017). Formation of most of our coal brought earth close to global glaciation. Proceedings of the National Academy of Sciences, 114, 11333–11337.

    Article  Google Scholar 

  • Gruninger, H., Armstrong, K., Greim, D., Boffa-Ballaran, T., Frost, D. J., & Senker, J. (2017). Hidden oceans? Unraveling the structure of hydrous defects in the Earth’s deep interior. Journal of the America Chemical Society, 139(30), 10499–10505. https://doi.org/10.1021/jacs.7b05432.

    Article  Google Scholar 

  • Hagar, B. H., & O’Connell, R. J. (1979). Kinematic models of large-scale flow in the earth’s mantle. Journal of Geophysical Research, 84, 1031–1048.

    Article  Google Scholar 

  • Hayes, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the earth’s orbit: Pacemaker of the ice ages. Science, 194, 1121–1132.

    Google Scholar 

  • Hinnov, L. A. (2013). Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences. Geological Society of America Bulletin, 125, 1703–1724. https://doi.org/10.1130/B30934.1.

    Article  Google Scholar 

  • Hinnov, L. A. (2018). Astromomical metronome of geological consequence. Proceedings of the National Academy of Sciences, 115, 6104–6106.

    Article  Google Scholar 

  • Hirchmann, M. M. (2010). Partial melt in the oceanic low velocity zone. Physics of the Earth and Planetary Interiors, 179, 60–71.

    Article  Google Scholar 

  • Hoink, T., Jellinek, A. M., & Lenardic, A. (2011). A viscous coupling at the lithosphere-asthenosphere boundary. Geochemistry, Geophysics, Geosystems, 12, QOAK02.

    Article  Google Scholar 

  • Imbrie, J., & Imbrie, C. P. (1979). Ice ages: Solving the mystery (p. 224). Short Hills: Enslow Publishers.

    Book  Google Scholar 

  • Jordan, T. H. (1974). Some comments on tidal drag as a mechanism for driving plate motion. Journal of Geophysical Research, 79, 2141–2142.

    Article  Google Scholar 

  • Kennedy, G. C., & Nordlie, B. E. (1968). The genesis of diamond deposits. Economic Geology, 63, 495–503.

    Article  Google Scholar 

  • Kent, D. V., Olsen, P. E., & Muttoni, G. (2017). Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic form continental sediments nand correlation with standard marine stages. Earth Science Review, 166, 153–180.

    Article  Google Scholar 

  • Kreichgauer, D. (1902). Die aquatorfrange in der geologie (p. 248). Munich: Steyl.

    Google Scholar 

  • Laskar, J. (1990). The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones. Icarus, 88, 266–291.

    Article  Google Scholar 

  • Laskar, J. (1995). Large scale chaos and marginal stability in the solar system. In D. Lagolnitzer (Ed.), Proceedings volume, XI International Congress of Mathematical Physics (pp. 75–120).

    Google Scholar 

  • Laskar, J., Correia, A. C. M., Gastineau, M., Joutel, F., Lavard, B., & Robutel, P. (2004). Long term evolution and chaotic deffusion of the insolation quantities of Mars. Icarus, 170, 343–364.

    Article  Google Scholar 

  • Laskar, J., Fienga, A., Gastineau, M., & Manche, H. (2011). La2010: A new orbital solution for the ling-term motion of the earth. Astronomy and Astrophysics, 532, A89. https://doi.org/10.1051/0004-6361/201116836.

  • Lathe, R. (2004). Fast tidal cycling and the origin of life. Icarus, 168, 18–22.

    Article  Google Scholar 

  • Liu, J., Li, J., Hrubiak, R., & Smith, J. S. (2016). Origin of ultralow velocity zones through slab-derived metallic melt. Proceedings of the National Academy of Sciences, 113, 5547–5551.

    Article  Google Scholar 

  • Ma, C., Meyers, S. R., & Sageman, B. B. (2017). Theory of chaotic orbital variations confirmed by Cretaceous geological evidence. Nature, 542, 468–470. https://doi.org/10.1038/nature21402.

    Article  Google Scholar 

  • Malcuit, R. J. (2015). The twin sister planets, Venus and Earth: Why are they so different? (p. 401). Cham: Springer International Publishers.

    Book  Google Scholar 

  • Meyer, H. O. A. (1985). Genesis of diamond: A mantle saga. American Mineralogist, 70, 344–355.

    Google Scholar 

  • Meyers, S. R., & Malinverno, A. (2018). Proterozoic Milankovitch cycles and the history of the solar system. Proceedings of the National Academy of Sciences, 115, 6363–6368.

    Article  Google Scholar 

  • Milankovitch, M. (1920). Theorie mathematique des phenomenenes thermiques produits per la radiation solaire. Paris: Gauthier-Villars.

    Google Scholar 

  • Milankovitch, M. (1941). Kanon der erdbestrahlung und seine andwendung auf das eiszeitenproblem (Vol. 133, pp. 1–633). Belgrade: Royal Serbian Academy Special Publication. (English translation published in 1969 by Israel Program for Scientific Translations available from U. S. Department of Commerce.).

    Google Scholar 

  • Milankovitch, M. (1952). Memories, experiences and perceptions from the years 1909-1944, Belgrade: Serbian Academy of Sciences, CXCV, p. 1–322. (in Serbo-Croatian).

    Google Scholar 

  • Milankovitch, M. (1957). Astronomische theorie der klimaschwankungen ihr werdegang und widerhall (Vol. 280, p. 58). Belgrade: Serbian Academy of Sciences, Monograph.

    Google Scholar 

  • Mingxiand, M., & Tucker, M. E. (2013). Milankovitch-driven cycles in the Precambrian of China: The Wumishan formation. Journal of Palaeogeography, 2, 369–389.

    Google Scholar 

  • Moore, G. W. (1973). Westward tidal lag as the driving force of plate tectonics. Geology, 1, 99–100.

    Article  Google Scholar 

  • Naif, S., Key, K., Constable, S., & Evans, R. L. (2013). Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature, 495, 356–359. https://doi.org/10.1038/nature11939.

    Article  Google Scholar 

  • Nelson, T. H., & Temple, P. G. (1972). Mainstream mantle convection: A geological analysis of plate motion. American Association of Petroleum Geologists Bulletin, 56, 226–246.

    Google Scholar 

  • Nestola, F., Jung, H., & Taylor, L. A. (2017). Mineral inclusions in diamonds may be synchronous but not syngenetic. Nature Communications, 8, 14168. https://doi.org/10.1038/ncomms14168(2017).

    Article  Google Scholar 

  • Nimmo, F., & Tanaka, K. (2005). Early crustal evolution of Mars. Annual Reviews, Earth and Planetary Sciences, 33, 133–161.

    Article  Google Scholar 

  • Olsen, P. E., & Kent, D. V. (1996). Milankovitch climate forcing in the tropics of Pangea during the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeontology, 122, 1–26.

    Article  Google Scholar 

  • Paillard, D. (2017). Predictable ice ages on a chaotic planet. Nature, 542, 419–420.

    Article  Google Scholar 

  • Peale, S. J., & Cassen, P. (1978). Contributions of tidal dissipation to lunar thermal history. Icarus, 36, 245–269.

    Article  Google Scholar 

  • Press, F., & Siever, R. (2001). Understanding earth (3rd ed., p. 620). New York: W. H. Freeman Co.

    Google Scholar 

  • Ricard, Y., Doglioni, C., & Sabadina, R. (1991). Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. Journal of Geophysical Research, 96, 8407–8415.

    Article  Google Scholar 

  • Rosenblatt, P., Charnoz, S., Dunseath, K. M., Terao-Dunseath, M., Trinh, A., Hyodo, R., Glenda, H., & Toupin, S. (2016). Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nature Geoscience, 9, 581–583.

    Article  Google Scholar 

  • Ross, M., & Schubert, G. (1986). Tidal dissipation in a viscoelastic planet: Proceedings of the 16th Lunar and Planetary Science Conference. Journal of Geophysical Research, 91(p), D447–D452.

    Article  Google Scholar 

  • Rothschild, L. J., & Lister, A. M. (2003). Evolution on planet Earth: The impact of the physical environment (p. 438). London: Academic Press.

    Google Scholar 

  • Salese, F., Pondrelli, M., Neeseman, A., Schmidt, G., & Ori, G. G. (2019). Geological evidence of planet-wide groundwater system on Mars. Journal of Geophysical Research: Planets, 124, 374–395. https://doi.org/10.1029/2018JE005802.

    Article  Google Scholar 

  • Schorghofer, N. (2008). Temperature response of Mars to Milankovitch cycles. Geophysical Research Letters, 35, L18201. https://doi.org/10.1029/2008GL034954.

    Article  Google Scholar 

  • Schulze, K., Marquardt, H., Kawazoe, T., Ballaran, T. B., McCammon, C., Koch-Muller, M., Kurnosov, A., & Marquardt, K. (2018). Seismically invisible water in Earth’s transition zone? Earth and Planetary Science Letters, 498, 9–16. https://doi.org/10.1016/j.epsl.2018.06.021.

    Article  Google Scholar 

  • Scoppola, B., Boccaletti, D., Bevis, M., Carminati, E., & Doglioni, C. (2006). The westward drift of the lithosphere: A rotational drag? Geological Society of America Bulletin, 118, 199–209.

    Article  Google Scholar 

  • Singer, S. F. (1968). The origin of the moon and geophysical consequences. Geophysical Journal, Royal Astronomical Society, 15, 205–226.

    Article  Google Scholar 

  • Singer, S. F. (1970). The origin of the moon and its consequences. Transactions, American Geophysical Union, 51, 637–641.

    Article  Google Scholar 

  • Singer, S. F. (1977). The early history of the Earth-Moon system. Earth Science Reviews, 13, 171–189.

    Article  Google Scholar 

  • Singer, S. F. (1986). Origin of the moon by capture. In W. K. Hartmann, R. J. Phillips, & J. G. Taylor (Eds.), Origin of the moon (pp. 471–485). Houston: Lunar and Planetary Institute.

    Google Scholar 

  • Sleep, N. H. (1994). Martian plate tectonics. Journal of Geophysical Research, 99, 5639–5655.

    Article  Google Scholar 

  • Sobolev, A. V., Asafov, E. V., Gurenko, A. A., Arndt, N. T., Batanova, V. G., Portnyagin, M. V., Garbe-Schonberg, D., Wilson, A. H., & Byerly, G. R. (2019). Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago. Nature, 571, 555–559.

    Article  Google Scholar 

  • Stern, R. J. (2005). Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33, 556–560.

    Article  Google Scholar 

  • Stern, R. J. (2007). When and how did plate tectonics begin? Theoretical and empirical considerations. Chinese Science Bulletin, 52, 578–591.

    Article  Google Scholar 

  • Stern, R. J., Leybourne, M. I., & Tsujimori, T. (2016). Kimberlites and the start of plate tectonics. Geology, 44, 799–802.

    Article  Google Scholar 

  • Stolper, D. A., & Bucholz, C. E. (2019). Neoproterozoic to early Phanerozoic rise in island arc redux state due to deep ocean oxygenation and increased marine sulfate levels. Proceedings of the National Academy of Sciences, 116, 8746–8755.

    Article  Google Scholar 

  • Taylor, F. B. (1910). Bearing of the tertiary mountain belt in the origin of the earth’s plan. Geological Society of America Bulletin, 21, 179–226.

    Article  Google Scholar 

  • Thompson, A. B. (1992). Water in the Earth’s upper mantle. Nature, 358(6384), 295–302. https://doi.org/10.1038/358295a0.

    Article  Google Scholar 

  • Uyeda, S., & Kanamori, H. (1979). Back-arc opening and the mode of subduction. Journal of Geophysical Research, 84, 1049–1061.

    Article  Google Scholar 

  • Wang, X. C., Wilde, S. A., Li, Q. L., & Yang, Y. N. (2015). Continental flood basalts derived from the hydrous mantle transition Zone. Nature Communications, 6, 7700. https://doi.org/10.1038/ncomms8700.

    Article  Google Scholar 

  • Wegener, A. (1924). The origin of continents and oceans (p. 212). London: Methuen.

    Google Scholar 

  • Windley, B. F. (1995). The evolving continents (3rd ed., p. 526). Chichester: Wiley.

    Google Scholar 

  • Wu, H. C., Zhang, S. H., Hinnov, L. A., Jiang, G. Q., Feng, Q. L., Li, H. Y., & Yang, T. S. (2013). Time-calibrated Milankovitch cycles for the Late Permian. Nature Communications, 4, 2452. https://doi.org/10.1038/ncomms3452.

    Article  Google Scholar 

  • Wu, H., Fang, Q., Wang, X., Hinnov, L. A., Qi, Y., Shen, S., Yang, T., Li, H., Chen, J., & Zhang, S. (2018). An ~34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm. Geology, 47, 83–86. https://doi.org/10.1130/G45461.1.

    Article  Google Scholar 

  • Yoder, C. F., & Standish, E. M. (1997). Martian precession and rotation from Viking lander range data. Journal of Geophysical Research, 102(E2), 4065–4080.

    Article  Google Scholar 

  • Zanazzi, J. J., & Triaud, A. H. M. J. (2019). The ability of significant tidal stress to initiate plate tectonics. Icarus, 325, 55–66.

    Article  Google Scholar 

  • Zerkle, A. L., Poulton, S. W., Newton, R. J., Mettam, C., Claire, M. W., Bekker, A., & Junium, C. K. (2017). Onset of the aerobic nitrogen cycle during the great oxidation event. Nature, 542, 465–467. https://doi.org/10.1038/nature20826.

    Article  Google Scholar 

  • Zhang, S., Wang, X., Hammarlund, E. U., Wang, H., Costa, M. M., Bjerrum, C. J., Connelly, J. N., Zhang, B., Bian, L., & Canfield, D. E. (2015). Orbital forcing of climate 1.4 billion years ago. Proceedings of the National Academy of Science, 112, E1406–E1413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malcuit, R. (2021). A Discussion of Three Major Paradigms in the Earth and Planetary Sciences. In: Geoforming Mars. Springer, Cham. https://doi.org/10.1007/978-3-030-58876-2_10

Download citation

Publish with us

Policies and ethics