Skip to main content

Comparative Analysis of Biogas with Renewable Fuels and Energy: Physicochemical Properties and Carbon Footprints

  • Chapter
  • First Online:
Biogas Production

Abstract

Industrialization, infrastructure development, energy production, and their use are the engines of the economic growth of any country. These growth drivers permanently require the uninterrupted supply of energy and fuels. Currently, gasoline and its products are a primary source which is fulfilling the energy requirement. However, their excessive usage as an energy source is generating the greenhouse gasses (GHGs), which deteriorate the environment and eventually cause negative impact on the climate. Currently, more than 85% of the world’s total energy needs are being fulfilled by crude petroleum resources. Therefore, it is necessary to look out for alternative fuels that are renewable and cause a low impact on the environment. Because of environmental concerns, there is a strong push to implement renewable energy sources. Renewable fuels and energies can play a crucial role in lowering GHG emissions and thus keeping the environment clean and green, which eventually meets the sustainability goals. Cellulosic ethanol in the USA and Brazil, biodiesel and biogas in Brazil and some European countries, and solar energy in India have shown promising growth. The carbon emissions of renewable fuels are very low compared to crude petroleum. This chapter compares the current scenario of biofuel implementation in various countries. Particular emphasis is placed on the current status of biogas development and commercialization. The carbon footprints of various biofuels/energies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrog Energy 39(1):1–12

    Article  CAS  Google Scholar 

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653

    Article  CAS  Google Scholar 

  • Alaswad A, Dassisti M, Prescott T, Olabi AG (2015) Technologies and developments of third generation biofuel production. Renew Sust Energ Rev 51:1446–1460

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (2003) Applications of the anaerobic digestion process. In: Ahring BK et al (eds) Biomethanation II, Advances in biochemical engineering/biotechnology. Springer, Berlin, Heidelberg, pp 1–33

    Google Scholar 

  • ASTM (1995) Annual book of ASTM standards: 1995. Metals Test Methods and Naytical Procedures, ASTM

    Google Scholar 

  • Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochemistry and Biophysics Reports 10:52–61

    Article  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282

    Article  CAS  Google Scholar 

  • Banerjee R, Kumar SPJ, Mehendale N, Sevda S, Garlapati VK (2019) Intervention of microfluidics in biofuel and bioenergy sectors: technological considerations and future prospects. Renew Sust Energ Rev 101:548–558

    Article  CAS  Google Scholar 

  • Bhatia L, Garlapati VK, Chandel AK (2019) Scalable Technologies for Lignocellulosic Biomass Processing into cellulosic ethanol. In: Pogaku R (ed) Horizons in bioprocess engineering. Springer Nature, Switzerland AG, pp 73–90. https://doi.org/10.1007/978-3-030-29069-6_1

    Chapter  Google Scholar 

  • Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26(1):7–13

    Article  PubMed  CAS  Google Scholar 

  • Braun R, Weiland P, Wellinger A (2008) Biogas from energy crop digestion. In IEA bioenergy task (Vol. 37, pp. 1–20)

    Google Scholar 

  • Chakrabarty S, Boksh FM, Chakraborty A (2013) Economic viability of biogas and green self-employment opportunities. Renew Sust Energ Rev 28:757–766

    Article  Google Scholar 

  • Chandel AK, Albarelli JQ, dos Santos DT, Chundawat SPS, Puri M, Meireles MAA (2019) Comparative analysis of key Technologies for Cellulosic Ethanol Production from Brazilian sugarcane bagasse at the commercial-scale. Biofuels Bioprod Biorefin 13(4):994–1014

    Article  CAS  Google Scholar 

  • Chandel A, Silveira MHL (2017) Advances in sugarcane biorefinery: technologies, commercialization, policy issues and paradigm shift for bioethanol and by-products. Elsevier Press, Amsterdam, The Netherland

    Google Scholar 

  • Chandel AK, Garlapati VK, Singh AK, Antunes FAF, Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    Article  CAS  PubMed  Google Scholar 

  • Chinnici G, Selvaggi R, D’Amico M, Pecorino B (2018) Assessment of the potential energy supply and biomethane from the anaerobic digestion of agro-food feedstocks in Sicily. Renew Sust Energ Rev 82:6–13

    Article  Google Scholar 

  • Coelho ST, Paletta CEM, Freitas MAV (2000) Medidas mitigadoras para a redução de emissões de gases de efeito estufa na geração termelétrica. In M. A. Freitas (Ed). Brasília: Dupligrafica Ed./ANEEEL/CENBIO/BUN/MCT, PNUD

    Google Scholar 

  • Coronado CR, de Carvalho Jr JA, Silveira JL (2009) Biodiesel CO2 emissions: a comparison with the main fuels in the Brazilian market. Fuel Process Technol 90(2):204–211

    Article  CAS  Google Scholar 

  • De Baere L, Mattheeuws B (2008) State of the art anaerobic digestion of solid waste. Waste management world 9(4):1–8

    Google Scholar 

  • Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40(34):11094–11111

    Article  CAS  Google Scholar 

  • Eurostat (2005) Europe in figures: Eurostat yearbook (Vol. 1). Office for Official Publications

    Google Scholar 

  • Fantozzi F, Buratti C (2009) Biogas production from different substrates in an experimental continuously stirred tank reactor anaerobic digester. Bioresour Technol 100(23):5783–5789

    Article  CAS  PubMed  Google Scholar 

  • Fehrenbach H, Giegrich J, Reinhardt G, Sayer U, Gretz M, Lanje K, Schmitz J (2008) Kriterien einer nachhaltigen Bioenergienutzung im globalen Maßstab. UBA-Forschungsbericht 206:41–112

    Google Scholar 

  • Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrog Energy 38(5):2039–2061

    Article  CAS  Google Scholar 

  • Garlapati VK, Gour RS, Sharma V, Roy LS, Samudrala PJK, Thakur AK, Banerjee R (2017) Current status of biodiesel production from microalgae in India. In: Advances in Biofeedstocks and biofuels. Production Technologies for Biofuels. Wiley–Scrivener Publishing House, Austin, USA, pp 129–154

    Google Scholar 

  • Garlapati VK, Kant R, Kumari A, Mahapatra P, Das P, Banerjee R (2013) Lipase mediated transesterification of Simarouba glauca oil: a new feedstock for biodiesel production. Sustainable chemical processes 1:11

    Article  CAS  Google Scholar 

  • Garlapati VK, Tewari S, Ganguly R (2019) LCA of first-, second- generation, and microalgae biofuels. In: Advances in feedstock conversion Technologies for Alternative Fuels and Bioproducts. Woodhead Publishing, USA, Elsevier, Imprint, pp 355–371

    Chapter  Google Scholar 

  • Garlapati VK, Roy LS, Banerjee R (2015) An overview of reactor designs for biodiesel production. In: Bioenergy: opportunities and challenges. CRC Press, Taylor and Francis Group, USA, pp 221–240

    Google Scholar 

  • Gebrezgabher SA, Meuwissen MP, Prins BA, Lansink AGO (2010) Economic analysis of anaerobic digestion - a case of Green power biogas plant in the Netherlands. NJAS-Wageningen Journal of Life Sciences 57(2):109–115

    Article  Google Scholar 

  • Gemmeke B, Rieger C, Weiland P, Schröder J (2009) Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich. Fachagentur Nachwachsende Rohstoffe, Guelzow-Pruezen

    Google Scholar 

  • Ghazali WNMW, Mamat R, Masjuki HH, Najafi G (2015) Effects of biodiesel from different feedstocks on engine performance and emissions: a review. Renew Sust Energ Rev 51:585–602

    Article  CAS  Google Scholar 

  • González MOA, Gonçalves JS, Vasconcelos RM (2017) Sustainable development: case study in the implementation of renewable energy in Brazil. J Clean Prod 142:461–475

    Article  Google Scholar 

  • Green DW, Perry RH (1997) Perry’s Chemical Engineers’ Handbook/edición Don W. Green y Robert H. Perry (No. C 660.28 P47 2008.)

    Google Scholar 

  • Gupta RB (2008) Hydrogen fuel: production, transport, and storage. Crc Press

    Google Scholar 

  • Gustavsson DJI, Tumlin S (2013) Carbon footprints of Scandinavian wastewater treatment plants. Water Sci Technol 68(4):887–893

    Article  CAS  PubMed  Google Scholar 

  • Hammond GP, Seth SM (2013) Carbon and environmental footprinting of global biofuel production. Appl Energy 112:547–559

    Article  Google Scholar 

  • Hansupalak N, Piromkraipak P, Tamthirat P, Manitsorasak A, Sriroth K, Tran T (2016) Biogas reduces the carbon footprint of cassava starch: a comparative assessment with fuel oil. J Clean Prod 134:539–546

    Article  CAS  Google Scholar 

  • Hasan MM, Rahman MM (2017) Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: a review. Renew Sust Energ Rev 74:938–948

    Article  CAS  Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16(1):143–169

    Article  CAS  Google Scholar 

  • Hosseini SE, Wahid MA (2013) Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia. Renew Sust Energ Rev 19:454–462

    Article  Google Scholar 

  • International Energy Agency (2018) Global Energy & CO2 Status Report 2017. https://www.iea.org/publications/freepublications/publication/GECO2017.pdf

  • IRENA (2017) Biogas for road vehicles: technology brief

    Google Scholar 

  • Izursa JL, Hanlon E, Amponsah N, Capece J (2013) Global warming potential and eutrophication potential of biofuel feedstock crops produced in Florida. Measured Under Different Scenarios. U.S. Department of energy office of scientific and technical information, Hendry County, Florida

    Google Scholar 

  • Jambo SA, Abdulla R, Azhar SHM, Marbawi H, Gansau JA, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769

    Article  CAS  Google Scholar 

  • Jha D, Jain V, Sharma B, Garlapati VK (2017) Microalgae-based pharmaceuticals and Nutraceuticals: an emerging field with immense market potential. ChemBioEng Reviews 4(4):257–272

    Article  CAS  Google Scholar 

  • Kárászová M, Sedláková Z, Izák P (2015) Gas permeation processes in biogas upgrading: a short review. Chem Pap 69(10):1277–1283

    Article  CAS  Google Scholar 

  • Khan IU, Othman MHD, Hashim H, Matsuura T, Ismail AF, Rezaei-DashtArzhandi M, Azelee IW (2017) Biogas as a renewable energy fuel - a review of biogas upgrading, utilisation and storage. Energy Convers Manag 150:277–294

    Article  CAS  Google Scholar 

  • Khan MA, Ngo HH, Guo W, Liu Y, Zhang X, Guo J, Chang SW, Nguyen DD, Wang J (2018) Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renew Energy 129:754–768

    Article  CAS  Google Scholar 

  • Khanna M, Crago CL, Black M (2011) Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Interface Focus 1(2):233–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Khanna N, Das D (2013) Biohydrogen production by dark fermentation. WIREs Ener Environ 2:401–421

    Google Scholar 

  • Kim D, Lee K, Park KY (2015) Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment. Int Biodeterior Biodegradation 101:42–46

    Article  CAS  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22(2):1358–1364

    Article  CAS  Google Scholar 

  • Knothe G, Razon LF (2017) Biodiesel fuels. Prog Energy Combust Sci 58:36–59

    Article  Google Scholar 

  • Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84(9):1059–1065

    Article  CAS  Google Scholar 

  • Knothe G, Steidley KR (2007) Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. Fuel 86(16):2560–2567

    Article  CAS  Google Scholar 

  • Kuila A, Sharma V, Garlapati VK, Singh A, Roy LS, Banerjee R (2017) Present status on enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. In: Advances in Biofeedstocks and biofuels. Volume 1: Biofeedstocks and their processing. Wiley – Scrivener Publishing LLC, Austin, USA, pp 85–96

    Chapter  Google Scholar 

  • Kumar SPJ, Garlapati VK, Dash A, Banerjee R, Scholz P (2017) Sustainable Green solvents and techniques for lipid extraction from microalgae: a review. Algal Research: Biomass, Biofuels and Bioproducts 21:138–147

    Article  Google Scholar 

  • Kumari A, Mahapatra P, Garlapati VK, Banerjee R (2009) Enzymatic transesterification of Jatropha oil. Biotechnol Biofuels 2:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee D-H (2016) Cost-benefit analysis, LCOE and evaluation of financial feasibility of full commercialization of biohydrogen. Int J Hydrog Energy 41(7):4347–4357

    Article  CAS  Google Scholar 

  • Licht FO (2006) World ethanol markets: the outlook to 2015

    Google Scholar 

  • Mahmudul HM, Hagos FY, Mamat R, Adam AA, Ishak WFW, Alenezi R (2017) Production, characterization and performance of biodiesel as an alternative fuel in diesel engines - a review. Renew Sust Energ Rev 72:497–509

    Article  CAS  Google Scholar 

  • Mazzucchi OAJ (1980) Biodigestor rural. São Paulo, CESP 29

    Google Scholar 

  • Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification - a review. Renew Sust Energ Rev 10(3):248–268

    Article  CAS  Google Scholar 

  • Mekonnen MM, Romanelli TL, Ray C, Hoekstra AY, Liska AJ, Neale CM (2018) Water, energy, and carbon footprints of bioethanol from the US and Brazil. Environ Sci Technol 52(24):14508–14518

    Article  CAS  PubMed  Google Scholar 

  • Montpart N, Ribot-Llobet E, Garlapati VK, Rago L, Baeza JA, Guisasola A (2014) Methanol opportunities for electricity and hydrogen production in bioelectrochemical systems. Int J Hydrog Energy 39(2):770–777

    Article  CAS  Google Scholar 

  • Muñoz I, Flury K, Jungbluth N, Rigarlsford G, Canals LM, King H (2014) Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int J Life Cycle Assess 19(1):109–119

    Article  CAS  Google Scholar 

  • Parchen CAP (1979) Manual de biogás. Acarpa-Emater

    Google Scholar 

  • Paulauskiene T, Bucas M, Laukinaite A (2019) Alternative fuels for marine applications: biomethanol-biodiesel-diesel blends. Fuel 248:161–167

    Article  CAS  Google Scholar 

  • Pauss A, Naveau H, Nyns EJ (1987) In D. O. Hall, R. P. Overend (eds.): Biomass: Regenerable Energy (pp. 273–291). Chichester

    Google Scholar 

  • Petersson A, Wellinger A (2009) Biogas upgrading technologies–developments and innovations. IEA bioenergy 20:1–19

    Google Scholar 

  • Rahman SNA, Masdar MS, Rosli MI, Majlan EH, Husaini T, Kamarudin SK, Daud WRW (2016) Overview biohydrogen technologies and application in fuel cell technology. Renew Sust Energ Rev 66:137–162

    Article  CAS  Google Scholar 

  • Roy LS, Garlapati VK, Banerjee R (2015) Challenges in harnessing the potential of Lignocellulosic biofuels and the probable combating strategies. In: Bioenergy: opportunities and challenges. CRC Press, Taylor and Francis Group, USA, pp 171–204

    Google Scholar 

  • Santos RB, Lima AKDC (2017) Análise comparativa do biogás: processo em biodigestores e de aterro sanitário. RevistaEletrônica de Energia 6(1)

    Google Scholar 

  • Scarlat N, Dallemand JF, Monforti-Ferrario F, Banja M, Motola V (2015) Renewable energy policy framework and bioenergy contribution in the European Union–an overview from National Renewable Energy Action Plans and Progress reports. Renew Sust Energ Rev 51:969–985

    Article  Google Scholar 

  • Sevda S, Garlapati VK, Sharma S, Bhattacharya S, Sreekrishnan TR (2019) Microalgae at niches of bioelectrochemical systems: a new platform for sustainable energy production coupled industrial effluents. Bioresource Technology Reports 7C:100290

    Article  Google Scholar 

  • Sharma M, Kaushik A (2017) Biohydrogen economy: challenges and prospects for commercialization. In: Biohydrogen production: sustainability of current technology and future perspective. Springer, New Delhi, pp 253–267

    Chapter  Google Scholar 

  • Silva SS, Chandel AK (2014) Biofuels in Brazil: fundamental aspects, recent developments, and future perspectives. Springer Verlag, Heidelberg, Germany

    Book  Google Scholar 

  • Stoeglehner G, Narodoslawsky M (2009) How sustainable are biofuels? Answers and further questions arising from an ecological footprint perspective. Bioresour Technol 100(16):3825–3830

    Article  CAS  PubMed  Google Scholar 

  • Szabó G, Fazekas I, Szabó S, Szabó G, Buday T, Paládi M, Krisztián K, Kerényi A (2014) The carbon footprint of a biogas power plant. Environ Eng Manag J 13(11):2867–2874

    Article  Google Scholar 

  • Thangavelu SK, Ahmed AS, Ani FN (2016) Review on bioethanol as alternative fuel for spark ignition engines. Renew Sust Energ Rev 56:820–835

    Article  CAS  Google Scholar 

  • Torres-Jimenez E, Svoljšak-Jerman M, Gregorc A, Lisec I, Dorado MP, Kegl B (2009) Physical and chemical properties of ethanol− biodiesel blends for diesel engines. Energy Fuel 24(3):2002–2009

    Article  CAS  Google Scholar 

  • Vargaftik, N. B. (1975). Handbook of physical properties of liquids and gases-pure substances and mixtures

    Book  Google Scholar 

  • Verma P, Sharma MP (2016) Review of process parameters for biodiesel production from different feedstocks. Renew Sust Energ Rev 62:1063–1071

    Article  CAS  Google Scholar 

  • Wang M, Wang Z, Gong X, Guo Z (2014) The intensification technologies to water electrolysis for hydrogen production - a review. Renew Sust Energ Rev 29:573–588

    Article  CAS  Google Scholar 

  • Weber CL, Matthews HS (2008) Quantifying the global and distributional aspects of American household carbon footprint. Ecol Econ 66(2–3):379–391

    Article  Google Scholar 

  • Wei P, Cheng LH, Zhang L, Xu XH, Chen HL, Gao CJ (2014) A review of membrane technology for bioethanol production. Renew Sust Energ Rev 30:388–400

    Article  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860

    Article  CAS  PubMed  Google Scholar 

  • Whiting A, Azapagic A (2014) Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 70:181–193

    Article  Google Scholar 

  • Wright LA, Kemp S, Williams I (2011) ‘Carbon footprinting’: towards a universally accepted definition. Carbon management 2(1):61–72

    Article  Google Scholar 

  • Wu CZ, Yin XL, Yuan ZH, Zhou ZQ, Zhuang XS (2010) The development of bioenergy technology in China. Energy 35(11):4445–4450

    Article  CAS  Google Scholar 

  • Yousuf A, Khan MR, Pirozzi D, Ab Wahid Z, Atnaw SM (2017) Economic and market value of biogas technology. In: Waste biomass management - a holistic approach. Springer, Cham, pp 137–158

    Chapter  Google Scholar 

  • Zachow CR (2000) Biogás. Monografia de Graduação, Ijuí-RS, Brazil

    Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP, CNPq, and CAPES for the financial assistance. AKC is grateful to the CAPES-Brazil for the financial support through visiting professor and researcher program (Process USP number: 15.1.1118.1.0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Kumar Chandel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mier-Alba, E. et al. (2020). Comparative Analysis of Biogas with Renewable Fuels and Energy: Physicochemical Properties and Carbon Footprints. In: Balagurusamy, N., Chandel, A.K. (eds) Biogas Production. Springer, Cham. https://doi.org/10.1007/978-3-030-58827-4_7

Download citation

Publish with us

Policies and ethics