Skip to main content

Self-organizing-Map Analysis of InSAR Time Series for the Early Warning of Structural Safety in Urban Areas

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Among the many causes of collapse of civil structures, those related to the downfall of foundations are crucial for their likely catastrophic consequences. Interferometric synthetic aperture radar (InSAR) techniques may help monitoring the time evolution of ground displacements affecting engineered structures in large urban areas. Artificial neural networks can be exploited to analyze the huge amount of data that is collected over long periods of time on very dense grid of geographical points. The paper presents a neural network-based analysis tool, able to evidence similarities among time series acquired in different points and times. This tool could support an early-warning system, aiming to forecast critical events in urban areas. The implemented procedure is tested on a dataset of InSAR time series recorded over an area of the city of London.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C.H. (ed.): Ultrasonic and advanced methods for nondestructive testing and material characterization. World Scientific Publishing, Singapore (2007)

    Google Scholar 

  2. Porcu, M.C., Pieczonka, L., Frau, A., Staszewski, W.J., Aymerich, F.: Assessing the scaling subtraction method for impact damage detection in composite plates. J. Nondestruct. Eval. 36(2), 1–16 (2017). https://doi.org/10.1007/s10921-017-0413-9

    Article  Google Scholar 

  3. Porcu, M.C., Patteri, D.M., Melis, S., Aymerich, F.: Effectiveness of the FRF curvature technique for structural health monitoring. Constr. Build. Mat. 226, 173–187 (2019)

    Article  Google Scholar 

  4. Frau, A., Pieczonka, L., Porcu, M.C., Staszewski, W.J., Aymerich, F.: Analysis of elastic nonlinearity for impact damage detection in composite laminates. J. Phys: Conf. Ser. 628(1), 012103 (2015)

    Google Scholar 

  5. Loi, G., Porcu, M.C., Pieczonka, L., Staszewski, W.J., Aymerich, F.: Scaling subtraction method for damage detection in composite beams. Procedia Structural Integrity 24, 118–126 (2019)

    Article  Google Scholar 

  6. Floris, I., Sales, S., Calderon, P.A., Adam, J.M.: Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction. Measurement 132, 35–46 (2019)

    Article  Google Scholar 

  7. Milillo, P., Porcu, M. C., Lundgren, P., Soccodato, F., Salzer, J., Fielding, E., Biondi, F.: The ongoing destabilization of the Mosul dam as observed by synthetic aperture radar interferometry. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 6279–6282 (2017)

    Google Scholar 

  8. Milillo, P., Giardina, G., DeJong, M., Perissin, D., Milillo, G.: Multi-temporal InSAR structural damage assessment: the London crossrail case study. Remote Sens. 10(2), 287 (2018)

    Article  Google Scholar 

  9. Giardina, G., Milillo, P., DeJong, M.J., Perissin, D., Milillo, G.: Evaluation of InSAR monitoring data for post-tunnelling settlement damage assessment. Struct. Control Hlth. 26(2), e2285 (2019)

    Article  Google Scholar 

  10. Milillo, P., Giardina, G., Perissin, D., Milillo, G., Coletta, A., Terranova, C.: Pre-Collapse space geodetic observations of critical infrastructure: the Morandi bridge, Genoa, Italy. Remote Sens. 11(12), 1403 (2019)

    Article  Google Scholar 

  11. Raucoules, D., Colesanti, C., Carnec, C.: Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geosci. 339(5), 289–302 (2007)

    Article  Google Scholar 

  12. Kontogianni, V., Pytharouli, S., Stiros, S.: Ground subsidence, quaternary faults and vulnerability of utilities and transportation networks in Thessaly, Greece. Environ. Geol. 52(6), 1085–1095 (2007)

    Article  Google Scholar 

  13. Kong, T.B., Komoo, I.: Urban geology: case study of Kuala Lumpur. Eng. Geol. 28(1–2), 71–94 (1990)

    Article  Google Scholar 

  14. Cubrinovski, M., Robinson, K., Taylor, M., Hughes, M., Orense, R.: Lateral spreading and its impacts in urban areas in the 2010–2011 Christchurch earthquakes, New Zeland. J. Geol. Geophys. 55(3), 255–269 (2012)

    Article  Google Scholar 

  15. Monjezi, M., Hasanipanah, M., Khandelwal, M.: Evaluation and prediction of blast-induced ground vibration at Shur river dam, Iran, by artificial neural network. Neural Comput. Appl. 22(7–8), 1637–1643 (2013)

    Article  Google Scholar 

  16. Ghaboussi, J., Joghataie, A.: Active control of structures using neural networks. J. Eng. Mech. 121(4), 555–567 (1995)

    Article  Google Scholar 

  17. Rainieri, C., Fabbrocino, G., Cosenza, E.: Integrated seismic early warning and structural health monitoring of critical civil infrastructures in seismically prone areas. Struct. Hlth. Monitor. 10(3), 291–308 (2011)

    Article  Google Scholar 

  18. Carcangiu, S., Fanni, A., Pegoraro, P.A., Sias, G., Sulis, S.: Forecasting-aided monitoring for the distribution system state estimation. Complexity (2020)

    Google Scholar 

  19. Cannas, B., et al.: Towards an automatic filament detector with a Faster R-CNN on MAST-U. Fusion Eng. Des. 146, 374–377 (2019)

    Article  Google Scholar 

  20. Secci, R., Laura Foddis, M., Mazzella, A., Montisci, A., Uras, G.: Artificial neural networks and Kriging method for slope geomechanical characterization. In: Lollino, G., Giordan, D., Crosta, Giovanni B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N. (eds.) Engineering Geology for Society and Territory - Volume 2, pp. 1357–1361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09057-3_239

    Chapter  Google Scholar 

  21. Carcangiu, S., Montisci, A.: A Locally recurrent neural network-based approach for the early fault detection. In: IEEE 4th International Forum on Research & Technology for Society and Industry (RTSI), pp. 1–6. Palermo (2018)

    Google Scholar 

  22. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  23. Da Silva, I.N., Spatti, D.H., Flauzino, R.A., Liboni, L.H.B., dos Reis Alves, S.F.: Artificial neural networks. Springer International Publishing, Cham (2017)

    Book  Google Scholar 

  24. Wang, J.: Artificial neural networks versus natural neural networks: a connectionist paradigm for preference assessment. Decis. Support Syst. 11(5), 415–429 (1994)

    Google Scholar 

  25. Hebb, D.O.: The organization of behavior: a neuropsychological theory. Science Eds (1962)

    Google Scholar 

  26. Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 2(6), 459–473 (1989)

    Article  Google Scholar 

  27. Maass, W.: On the computational power of winner-take-all. Neural Comput. 12(11), 2519–2535 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Pietro Milillo of Jet Propulsion Laboratory, CALTECH (Pasadena, USA) is gratefully acknowledged for giving the database used in this paper and precious suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montisci, A., Porcu, M.C. (2020). Self-organizing-Map Analysis of InSAR Time Series for the Early Warning of Structural Safety in Urban Areas. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12255. Springer, Cham. https://doi.org/10.1007/978-3-030-58820-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58820-5_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58819-9

  • Online ISBN: 978-3-030-58820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics