Skip to main content

Biomechanics Sensor Node for Virtual Reality: A Wearable Device Applied to Gait Recovery for Neurofunctional Rehabilitation

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12255)

Abstract

In several segments of the health areas, sensing has become a trend. Sensors allow data quantification for use in decision making or even to predict the clinical evolution of a given treatment, such as in rehabilitation therapies to restore patients’ motor and cognitive functions. This paper presents the Biomechanics Sensor Node (BSN), composed of an inertial measurement unit (IMU), developed to infer input information and control virtual environments. We also present a software solution, which integrates the BSN data with Unity Editor, one of the most used game engine nowadays. This asset allows Unity-developed virtual reality applications to use BSN a secure interaction device. Thus, during rehabilitation sessions, the patient receives visual stimuli from the virtual environment, controlled by the BSN device, while the therapist has access to the information about the movements performed in the therapy.

Keywords

  • Wearable sensors
  • Stationary gait
  • Virtual reality
  • Human computer-interaction
  • Neurofunctional rehabilitation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-58820-5_54
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-58820-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    The Asset is an item (e.g., source code, a 3D model, an audio file or an image) that facilitates to create Unity applications. An asset can be used to build diverse applications. Unity is a cross-platform engine that is used to develop games on multiple platforms.

References

  1. Aşkın, A., Atar, E., Koçyiğit, H., Tosun, A.: Effects of kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke. Somatosens. Mot. Res. 35(1), 25–32 (2018)

    CrossRef  Google Scholar 

  2. Beltrame, T., Amelard, R., Wong, A., Hughson, R.L.: Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models. J. Appl. Physiol. 124(2), 473–481 (2017)

    CrossRef  Google Scholar 

  3. Bernhard, F.P., Sartor, J., Bettecken, K., Hobert, M.A., Arnold, C., Weber, Y.G., Poli, S., Margraf, N.G., Schlenstedt, C., Hansen, C., et al.: Wearables for gait and balance assessment in the neurological ward-study design and first results of a prospective cross-sectional feasibility study with 384 inpatients. BMC Neurol. 18(1), 114 (2018)

    CrossRef  Google Scholar 

  4. Brandao, A.F., Dias, D.R., Castellano, G., Parizotto, N.A., Trevelin, L.C.: Rehabgesture: an alternative tool for measuring human movement. Telemedicine e-Health 22(7), 584–589 (2016)

    CrossRef  Google Scholar 

  5. Brandão, A.F., Dias, D.R.C., Guimarães, M.P., Trevelin, L.C., Parizotto, N.A., Castellano, G.: Gesturecollection for motor and cognitive stimuli: virtual reality and e-health prospects. J. Health Inform. 10(1), 9–16 (2018)

    Google Scholar 

  6. Byrom, B., McCarthy, M., Schueler, P., Muehlhausen, W.: Brain monitoring devices in neuroscience clinical research: the potential of remote monitoring using sensors, wearables, and mobile devices. Clin. Pharmacol. Ther. 104, 59–71 (2018)

    CrossRef  Google Scholar 

  7. Cameirao, M.S., i Badia, S.B., Duarte, E., Frisoli, A., Verschure, P.F.: The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 43(10), 2720–2728 (2012)

    CrossRef  Google Scholar 

  8. Cushman, L.A., Stein, K., Duffy, C.J.: Detecting navigational deficits in cognitive aging and alzheimer disease using virtual reality. Neurology 71(12), 888–895 (2008)

    CrossRef  Google Scholar 

  9. Dias, D.R.C., Alvarenga, I.C., Guimarães, M.P., Trevelin, L.C., Castellano, G., Brandão, A.F.: eStreet: virtual reality and wearable devices applied to rehabilitation. In: Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 775–789. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_60

    CrossRef  Google Scholar 

  10. dojot: dojot documentation (2019). https://dojotdocs.readthedocs.io/en/latest/. Accessed Dec 2019

  11. Foxlin, E.: Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graph. Appl. 6, 38–46 (2005)

    CrossRef  Google Scholar 

  12. Frade, M.C., dos Reis, I.M., Basso-Vanelli, R.P., Brandão, A.F., Jamami, M.: Reproducibility and validity of the 6-minute stationary walk test associated with virtual reality in subjects with COPD. Respiratory care, pp. respcare-06237 (2019). https://doi.org/10.4187/respcare.06237

  13. Hadjidj, A., Bouabdallah, A., Challal, Y.: Rehabilitation supervision using wireless sensor networks. In: 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–3. IEEE (2011)

    Google Scholar 

  14. Hsu, Y.L., Yang, S.C., Chang, H.C., Lai, H.C.: Human daily and sport activity recognition using a wearable inertial sensor network. IEEE Access 6, 31715–31728 (2018)

    CrossRef  Google Scholar 

  15. Laver, K.E., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. (2) (2015)

    Google Scholar 

  16. Lloréns, R., Noé, E., Colomer, C., Alcañiz, M.: Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 96(3), 418–425 (2015)

    CrossRef  Google Scholar 

  17. Nichols-Larsen, D.S., Clark, P., Zeringue, A., Greenspan, A., Blanton, S.: Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 36(7), 1480–1484 (2005)

    CrossRef  Google Scholar 

  18. Piron, L., et al.: Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J. Rehabil. Med. 41(12), 1016–1020 (2009)

    CrossRef  Google Scholar 

  19. Rose, F.D., Brooks, B.M., Rizzo, A.A.: Virtual reality in brain damage rehabilitation. Cyberpsychol. Behav. 8(3), 241–262 (2005)

    CrossRef  Google Scholar 

  20. dos Santos Mendes, F.A., et al.: Motor learning, retention and transfer after virtual-reality-based training in parkinson’s disease-effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy 98(3), 217–223 (2012)

    CrossRef  Google Scholar 

  21. Saposnik, G., et al.: Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 15(10), 1019–1027 (2016)

    CrossRef  Google Scholar 

  22. Schuster-Amft, C., et al.: Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: a multicenter parallel group randomized trial. PLoS ONE 13(10), e0204455 (2018)

    CrossRef  Google Scholar 

  23. Shin, J.H., Ryu, H., Jang, S.H.: A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J. Neuroeng. Rehab. 11(1), 32 (2014)

    CrossRef  Google Scholar 

  24. Statements, A.S.: Heart disease and stroke statistics 2013 update. Circulation 127(1), e6 (2013)

    Google Scholar 

  25. Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992)

    CrossRef  Google Scholar 

  26. SwordHealth: Reinventing Physical Threapy (2019). https://swordhealth.com/. Accessed Feb 2019

  27. Tieri, G., Morone, G., Paolucci, S., Iosa, M.: Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev. Med. Dev. 15(2), 107–117 (2018)

    CrossRef  Google Scholar 

  28. Tobler-Ammann, B.C., et al.: Exergames encouraging exploration of hemineglected space in stroke patients with visuospatial neglect: a feasibility study. JMIR Serious Games 5(3), e17 (2017)

    CrossRef  Google Scholar 

  29. Tregillus, S., Folmer, E.: VR-step: walking-in-place using inertial sensing for hands free navigation in mobile VR environments. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1250–1255. ACM (2016)

    Google Scholar 

  30. Turolla, A., et al.: Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J. Neuroeng. Rehab. 10(1), 85 (2013)

    CrossRef  Google Scholar 

  31. Vanbellingen, T., Filius, S.J., Nyffeler, T., van Wegen, E.E.: Usability of videogame-based dexterity training in the early rehabilitation phase of stroke patients: a pilot study. Front. Neurol. 8, 654 (2017)

    CrossRef  Google Scholar 

  32. Wade, E., Winstein, C.J.: Virtual reality and robotics for stroke rehabilitation: where do we go from here? Top. Stroke Rehab. 18(6), 685–700 (2011)

    CrossRef  Google Scholar 

  33. Wardini, R., et al.: Using a virtual game system to innovate pulmonary rehabilitation: safety, adherence and enjoyment in severe chronic obstructive pulmonary disease. Can. Respir. J. 20(5), 357–361 (2013)

    CrossRef  Google Scholar 

  34. Werium: INICIO - Werium Solutions (2019). http://www.weriumsolutions.com/. Accessed Feb 2019

  35. Wittmann, F., et al.: Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. J. Neuroeng. Rehab. 13(1), 75 (2016)

    CrossRef  Google Scholar 

  36. Zago, M., et al.: Gait evaluation using inertial measurement units in subjects with parkinson’s disease. J. Electromyogr. Kinesiol. (2018)

    Google Scholar 

  37. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimed. 19(2), 4–10 (2012)

    CrossRef  Google Scholar 

  38. Zhou, H., Razjouyan, J., Halder, D., Naik, A.D., Kunik, M.E., Najafi, B.: Instrumented trail-making task: application of wearable sensor to determine physical frailty phenotypes. Gerontology 65, 186–197 (2018)

    CrossRef  Google Scholar 

Download references

Funding

FAPESP (Sao Paulo Research Foundation, Brazil) grant number 2015/03695-5 (grant related to author: A.F.B.). The EMBRAPII (Brazilian Agency for Research and Industrial Innovation) and SEBRAE made a financial contribution to the development of BSN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Roberto Colombo Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Brandão, A.F. et al. (2020). Biomechanics Sensor Node for Virtual Reality: A Wearable Device Applied to Gait Recovery for Neurofunctional Rehabilitation. In: , et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12255. Springer, Cham. https://doi.org/10.1007/978-3-030-58820-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58820-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58819-9

  • Online ISBN: 978-3-030-58820-5

  • eBook Packages: Computer ScienceComputer Science (R0)