Arkin, J., Coops, N.C., Hermosilla, T., Daniels, L.D., Plowright, A.: Integrated fire severity–land cover mapping using very-high-spatial-resolution aerial imagery and point clouds. Int. J. Wildland Fire 28(11), 840–860 (2019). https://doi.org/10.1071/WF19008
CrossRef
Google Scholar
Lutes, D.C., et al.: FIREMON: fire effects monitoring and inventory system. Gen. Tech. Rep. RMRS-GTR-164. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD. 164 (2006)
Google Scholar
De Santis, A., Chuvieco, E.: GeoCBI: a modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 113, 554–562 (2009)
CrossRef
Google Scholar
Vo, V.D., Kinoshita, A.M.: Remote sensing of vegetation conditions after post-fire mulch treatments. J. Environ. Manage. 260, 109993 (2020)
CrossRef
Google Scholar
Furniss, T.J., Kane, V.R., Larson, A.J., Lutz, J.A.: Detecting tree mortality with Landsat-derived spectral indices: improving ecological accuracy by examining uncertainty. Remote Sens. Environ. 237, 111497 (2020)
CrossRef
Google Scholar
Hoe, M.S., Dunn, C.J., Temesgen, H.: Multitemporal LiDAR improves estimates of fire severity in forested landscapes. Int. J. Wildland Fire. 27, 581–594 (2018)
CrossRef
Google Scholar
Fissore, V., Mondino, E.B., Motta, R.: Limits and potentialities of gridded LiDAR data in the forest context: the case of the new Piemonte Region dataset. In: ForestSAT2014 Open Conference System, p. 1. AIT (2014)
Google Scholar
Borgogno Mondino, E., Fissore, V., Falkowski, M.J., Palik, B.: How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study. Int. J. Remote Sens. 41, 4551–4569 (2020)
CrossRef
Google Scholar
Su, Y., Guo, Q., Collins, B.M., Fry, D.L., Hu, T., Kelly, M.: Forest fuel treatment detection using multi-temporal airborne lidar data and high-resolution aerial imagery: a case study in the Sierra Nevada Mountains, California. Int. J. Remote Sens. 37, 3322–3345 (2016)
CrossRef
Google Scholar
Filippelli, S.K., Lefsky, M.A., Rocca, M.E.: Comparison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure. Remote Sens. Environ. 224, 154–166 (2019)
CrossRef
Google Scholar
Bohlin, J., Wallerman, J., Fransson, J.E.: Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand. J. For. Res. 27, 692–699 (2012)
CrossRef
Google Scholar
Regione Piemonte: Piano straordinario di interventi di ripristino del territorio percorso dagli incendi boschivi dell’autunno 2017. (2019) https://www.regione.piemonte.it/web/sites/default/files/media/documenti/2019-04/Piano%20Straordinario%20interventi%20di%20ripristino.pdf
Ascoli, D., Castagneri, D., Valsecchi, C., Conedera, M., Bovio, G.: Post-fire restoration of beech stands in the Southern Alps by natural regeneration. Ecol. Eng. 54, 210–217 (2013)
CrossRef
Google Scholar
Isenburg, M.: LAStools-efficient tools for LiDAR processing (2012). http://www.cs.unc.edu/∼isenburg/lastools/. Accessed 9 Oct 2012
Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., Lejeune, P.: A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4, 922–944 (2013). https://doi.org/10.3390/f4040922
CrossRef
Google Scholar
Chen, S., McDermid, G.J., Castilla, G., Linke, J.: Measuring vegetation height in linear disturbances in the boreal forest with UAV photogrammetry. Remote Sens. 9, 1257 (2017)
CrossRef
Google Scholar
Honkavaara, E., Litkey, P., Nurminen, K.: Automatic storm damage detection in forests using high-altitude photogrammetric imagery. Remote Sens. 5, 1405–1424 (2013)
CrossRef
Google Scholar
Plowright, A.: R package “ForestTools” (2018). https://github.com/andrew-plowright/ForestTools
Monnet, J.-M., Mermin, E., Chanussot, J., Berger, F.: Tree top detection using local maxima filtering: a parameter sensitivity analysis. In: 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems (Silvilaser 2010) (2010). 9 p.
Google Scholar
IPLA: PFT - Paini Forestali Territoriali, Regione Piemonte (2000)
Google Scholar
Tabacchi, G., Di Cosmo, L., Gasparini, P.: Aboveground tree volume and phytomass prediction equations for forest species in Italy. Eur. J. Forest Res. 130, 911–934 (2011). https://doi.org/10.1007/s10342-011-0481-9
CrossRef
Google Scholar
van Laar, A., Akça, A.: Forest Mensuration. MAFE. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5991-9
CrossRef
Google Scholar
Zliobaite, I.: On the relation between accuracy and fairness in binary classification. arXiv preprint arXiv:1505.05723 (2015)
Ajmar, A., Boccardo, P., Disabato, F., Giulio Tonolo, F.: Rapid Mapping: geomatics role and research opportunities. Rendiconti Lincei 26(1), 63–73 (2015). https://doi.org/10.1007/s12210-015-0410-9
CrossRef
Google Scholar
Morresi, D., Marzano, R., Motta, R., Garbarino, M.: Assessing fire severity through the integration of remote sensing and field burn indices: the big forest fires in North-Western Italy during autumn 2017. In: Geophysical Research Abstracts (2019)
Google Scholar
Kasischke, E.S., Turetsky, M.R., Ottmar, R.D., French, N.H., Hoy, E.E., Kane, E.S.: Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire 17, 515–526 (2008)
CrossRef
Google Scholar
Cocke, A.E., Fulé, P.Z., Crouse, J.E.: Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. Int. J. Wildland Fire 14, 189–198 (2005)
CrossRef
Google Scholar
Rogan, J., Franklin, J.: Mapping wildfire burn severity in southern California forests and shrublands using Enhanced Thematic Mapper imagery. Geocarto Int. 16, 91–106 (2001)
CrossRef
Google Scholar
Bragg, D.C.: Accurately measuring the height of (real) forest trees. J. Forest. 112, 51–54 (2014). https://doi.org/10.5849/jof.13-065
CrossRef
Google Scholar
Norton, D.A.: Modern New Zealand tree-ring chronologies II: nothofagus menziesii. Tree-Ring Bull. (43), 39–49 (1983)
Google Scholar
Weatherspoon, C.P., Skinner, C.N.: An assessment of factors associated with damage to tree crowns from the 1987 wildfires in northern California. For. Sci. 41, 430–451 (1995)
Google Scholar
Kane, V.R., et al.: Mixed severity fire effects within the Rim fire: relative importance of local climate, fire weather, topography, and forest structure. For. Ecol. Manage. 358, 62–79 (2015)
CrossRef
Google Scholar
Marschall, J.M., Guyette, R.P., Stambaugh, M.C., Stevenson, A.P.: Fire damage effects on red oak timber product value. For. Ecol. Manage. 320, 182–189 (2014)
CrossRef
Google Scholar
Catry, F.X., Rego, F., Moreira, F., Fernandes, P.M., Pausas, J.G.: Post-fire tree mortality in mixed forests of central Portugal. For. Ecol. Manage. 260, 1184–1192 (2010)
CrossRef
Google Scholar
Kattenborn, T., Sperlich, M., Bataua, K., Koch, B.: Automatic single tree detection in plantations using UAV-based photogrammetric point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40, 139 (2014)
CrossRef
Google Scholar
Nevalainen, O., et al.: Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 9, 185 (2017)
CrossRef
Google Scholar
Pont, D., Kimberley, M.O., Brownlie, R.K., Sabatia, C.O., Watt, M.S.: Calibrated tree counting on remotely sensed images of planted forests. Int. J. Remote Sens. 36, 3819–3836 (2015)
CrossRef
Google Scholar
Eid, T., Gobakken, T., Næsset, E.: Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scand. J. For. Res. 19, 512–523 (2004)
CrossRef
Google Scholar
Avery, T.E.: Forester’s guide to aerial photo interpretation. US Department of Agriculture, Forest Service (1966)
Google Scholar
Conedera, M., Peter, L., Marxer, P., Forster, F., Rickenmann, D., Re, L.: Consequences of forest fires on the hydrogeological response of mountain catchments: a case study of the Riale Buffaga, Ticino, Switzerland. Earth Surf. Proc. Land. J. Br. Geomorphol. Res. Group 28, 117–129 (2003)
CrossRef
Google Scholar
Wing, M.G., Burnett, J.D., Sessions, J.: Remote sensing and unmanned aerial system technology for monitoring and quantifying forest fire impacts. Int. J. Remote Sens. Appl. 4, 18–35 (2014)
Google Scholar
Cruz, H., Eckert, M., Meneses, J., Martínez, J.-F.: Efficient forest fire detection index for application in unmanned aerial systems (UASs). Sensors. 16, 893 (2016)
CrossRef
Google Scholar