Skip to main content

Application of the Self-organizing Map (SOM) to Characterize Nutrient Urban Runoff

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Urban stormwater runoff is considered worldwide as one of the most critical diffuse pollutions since it transports contaminants that threaten the quality of receiving water bodies and represent a harm to the aquatic ecosystem. Therefore, a thorough analysis of nutrient build-up and wash-off from impervious surfaces is crucial for effective stormwater-treatment design. In this study, the self-organizing map (SOM) method was used to simplify a complex dataset that contains precipitation, flow rate, and water-quality data, and identify possible patterns among these variables that help to explain the main features that impact the processes of nutrient build-up and wash-off from urban areas. Antecedent dry weather, among the rainfall-related characteristics, and sediment transport resulted in being the most significant factors in nutrient urban runoff simulations. The outcomes of this work will contribute to facilitating informed decision making in the design of management strategies to reduce pollution impacts on receiving waters and, consequently, protect the surrounding ecological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernhardt, E.S., Palmer, M.A.: Restoring streams in an urbanizing world. Freshw. Biol. 52, 738–751 (2007)

    Article  Google Scholar 

  2. Jiang, S.C., Lim, K.-Y., Huang, X., McCarthy, D., Hamilton, A.J.: Human and environmental health risks and benefits associated with use of urban stormwater. Wiley Interdiscip. Rev. Water 2, 683–699 (2015)

    Article  Google Scholar 

  3. Gorgoglione, A., Gioia, A., Iacobellis, V.: A framework for assessing modeling performance and effects of rainfall-catchment-drainage characteristics on nutrient urban runoff in poorly gauged watersheds. Sustainability 11, 4933 (2019)

    Article  Google Scholar 

  4. Brett, M.T., et al.: Non-point-source impacts on stream nutrient concentrations along a forest to urban gradient. Environ. Manage. 35, 330–342 (2005)

    Article  Google Scholar 

  5. Lee, H., Lau, S.L., Kayhanian, M., Stenstrom, M.K.: Seasonal first flush phenomenon of urban stormwater discharges. Water Res. 38(19), 4153–4163 (2004)

    Article  Google Scholar 

  6. Gobel, P., Dierkes, C., Coldewey, W.C.: Storm water runoff concentration matrix for urban areas. J. Contam. Hydrol. 91(1–2), 26–42 (2007)

    Article  Google Scholar 

  7. Nguyen, H.L., Leermakers, M., Elskens, M., De Ridder, F., Doan, T.H., Baeyens, W.: Correlations, partitioning and bioaccumulation of heavy metals between different compartments of Lake Balaton. Sci. Total Environ. 341(1–3), 211–226 (2005)

    Article  Google Scholar 

  8. Surbeck, C.Q., Jiang, S.C., Ahn, J.H., Grant, S.B.: Flow fingerprinting fecal pollution and suspended solids in stormwater runoff from an urban coastal watershed. Environ. Sci. Technol. 40(14), 4435–4441 (2006)

    Article  Google Scholar 

  9. Ki, S.J., et al.: Advancing assessment and design of stormwater monitoring programs using a self-organizing map: characterization of trace metal concentration profiles in stormwater runoff. Water Res. 45, 4183–4197 (2011)

    Article  Google Scholar 

  10. Varol, M.: Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey. Environ. Pollut. 259, 113860 (2020)

    Article  Google Scholar 

  11. Batur, E., Maktav, D.: Assessment of surface water quality by using satellite images fusion based on PCA method in the Lake Gala, Turkey. IEEE Trans. Geosci. Remote Sens. 57(5), 2983–2989 (2019)

    Article  Google Scholar 

  12. Kohonen, T.: Automatic formation of topological maps of patterns in a self-organizing system. In: Oja, E., Simula, O. (eds.) Processing 2nd Scandinavian Conference on Image Analysis, pp. 214–220 (1981)

    Google Scholar 

  13. Sengorur, B., Koklu, R., Ates, A.: Water quality assessment using artificial intelligence techniques: SOM and ANN—a case study of Melen River Turkey. Water Qual. Exposure Health 7(4), 469–490 (2015)

    Article  Google Scholar 

  14. Jiang, M., Wang, Y., Tang, Q., Meng, F., Yao, Z., Cheng, P.: Assessment of surface water quality using a growing hierarchical self-organizing map: a case study of the Songhua River Basin, northeastern China, from 2011 to 2015. Environ. Monit. Assess. 190, 260 (2018). Regional geographical information system: SIT Puglia: Available online: http://www.sit.puglia.it/. Accessed 8 Jan 2020

  15. Di Modugno, M., et al.: Build-up/wash-off monitoring and assessment for sustainable management of first flush in an urban area. Sustainability 7, 5050–5070 (2015)

    Article  Google Scholar 

  16. Veneziano, D., Iacobellis, V.: Multiscaling pulse representation of temporal rainfall. Water Resour. Res. 38, 131–1313 (2002)

    Article  Google Scholar 

  17. Veneziano, D., Furcolo, P., Iacobellis, V.: Multifractality of iterated pulse processes with pulse amplitudes generated by a random cascade. Fractals 10, 209–222 (2002)

    Article  Google Scholar 

  18. Gorgoglione, A., Gioia, A., Iacobellis, V., Piccinni, A.F., Ranieri, E.: A rationale for pollutograph evaluation in ungauged areas, using daily rainfall patterns: Case studies of the Apulian region in Southern Italy. Appl. Environ. Soil Sci. 2016 (2016)

    Google Scholar 

  19. Regional Regulation: Stormwater runoff and first flush regulations (implementation of article 13 of Legislative Decree no 152/06 and subsequent amendments), no 26, 9 December 2013. https://www.indicenormativa.it/sites/default/files/R_26_09_12_2013.pdf. Accessed 6 Jan 2020

  20. Rossman, L.A.: Storm water management model user’s manual version 5.0; EPA/600/R-05/040; National Risk Management Research Laboratory-Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA (2010)

    Google Scholar 

  21. Gorgoglione, A., Bombardelli, F.A., Pitton, B.J.L., Oki, L.R., Haver, D.L., Young, T.M.: Uncertainty in the parameterization of sediment build-up and wash-o processes in the simulation of sediment transport in urban areas. Environ. Model. Softw. 111, 170–181 (2019)

    Google Scholar 

  22. Horton, R.E.: An approach toward a physical interpretation of infiltration capacity. Soil Sci. Soc. Am. 5, 399–417 (1940)

    Article  Google Scholar 

  23. Kohonen, T.: Self-organizing Maps, 3rd edn. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56927-2

    Book  MATH  Google Scholar 

  24. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)

    Article  Google Scholar 

  25. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  26. Wei, C., Gao, C., Han, D., Zhao, W., Lin, Q., Wang, G.: Spatial and temporal variations of water quality in Songhua River from 2006 to 2015: implication for regional ecological health and food safety. Sustainability 9, 1502 (2017)

    Article  Google Scholar 

  27. Hofmann, H., Kafadar, K., Wickham, H.: Letter-value plots: boxplots for large data. J. Comput. Graph. Stat. 26(3), 469–477 (2017)

    Article  MathSciNet  Google Scholar 

  28. Vesanto, J.: SOM implementation in SOM toolbox. SOM toolbox online help. http://www.cis.hut.fi/projects/somtoolbox/documentation/somalg.shtml. Accessed Feb 2020

  29. Vettigli, G.: Minisom: minimalistic and numpy-based implementation of the self organizing map. https://github.com/JustGlowing/minisom. Accessed Feb 2020

  30. Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Ostblom, J., Lukauskas, S., et al.: mwaskom/seaborn: v0.9.0, July 2018. https://www.doi.org/10.5281/zenodo.1313201. Accessed Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Gorgoglione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gorgoglione, A., Castro, A., Gioia, A., Iacobellis, V. (2020). Application of the Self-organizing Map (SOM) to Characterize Nutrient Urban Runoff. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics