Skip to main content

A Computational Study of the Reaction Cyanoacetylene and Cyano Radical Leading to 2-Butynedinitrile and Hydrogen Radical

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The present work focuses on the characterization of the reaction between cyanoacetylene and cyano radical by electronic structure calculations of the stationary points along the minimum energy path. One channel, leading to C\(_{4}\)N\(_{2}\) (2-Butynedinitrile) + H, was selected due to the importance of its products. Using different ab initio methods, a number of stationary points of the potential energy surface were characterized. The energy values of these minima were compared in order to weight the computational costs in relation to chemical accuracy. The results of this works suggests that B2PLYP (and B2PLYPD3) gave a better description of the saddle point geometry, while B3LYP works better for minima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wyrowski, F., Schilke, P., Walmsley, C.: Vibrationally excited HC\(_{3}\)N toward hot cores. Astron. Astrophys. 341, 882–895 (1999)

    Google Scholar 

  2. Taniguchi, K., Saito, M., Sridharan, T., Minamidani, T.: Survey observations to study chemical evolution from high-mass starless cores to high-mass protostellar objects I: HC\(_{3}\)N and HC\(_{5}\)N. Astrophys. J. 854(2), 133 (2018)

    Google Scholar 

  3. Mendoza, E., et al.: A search for cyanopolyynes in L1157–B1. Monthly Not. R. Astron. Soc. 475(4), 5501–5512 (2018)

    Google Scholar 

  4. Takano, S., et al.: Observations of \(^{13}\)C isotopomers of HC\(_{3}\)N and HC\(_{5}\)N in TMC-1: evidence for isotopic fractionation. Astron. Astrophys. 329, 1156–1169 (1998)

    Google Scholar 

  5. Turner, B.E.: Detection of interstellar cyanoacetylene. Astrophys. J. 163, L35–L39 (1971)

    Google Scholar 

  6. Broten, N.W., Oka, T., Avery, L.W., MacLeod, J.M., Kroto, H.W.: The detection of HC\(_{9}\)N in interstellar space. 223, L105–L107 ( 1978). https://doi.org/10.1086/182739

  7. Bell, M., Feldman, P., Travers, M., McCarthy, M., Gottlieb, C., Thaddeus, P.: Detection of HC\(_{11}\)N in the cold dust cloud TMC-1. Astrophys. J. Lett. 483(1), L61–L64 (1997)

    Google Scholar 

  8. Loomis, R.A., et al.: Non-detection of HC\(_{11}\)N towards TMC-1: constraining the chemistry of large carbon-chain molecules. Monthly Not. R. Astron. Soc. 463(4), 4175–4183 (2016)

    Google Scholar 

  9. Cordiner, M.A., Charnley, S.B., Kisiel, Z., McGuire, B.A., Kuan, Y.J.: Deep K-band observations of TMC-1 with the green bank telescope: detection of HC\(_{7}\)O, nondetection of HC\(_{11}\)N, and a search for new organic molecules. Astrophys. J. 850(2), 187 (2017). https://doi.org/10.3847/1538-4357/aa970c

  10. Jaber Al-Edhari, A., et al.: History of the solar-type protostar IRAS 16293–2422 as told by the cyanopolyynes. A&A 597, A40 (2017). https://doi.org/10.1051/0004-6361/201629506

    Article  Google Scholar 

  11. Cheikh Sid, S., Morales, S.B., Guillemin, J.C., Klippenstein, S.J., Sims, I.R.: Low temperature rate coefficients for the reaction CN + HC\(_{3}\)N. J. Phys. Chem. A 117(46), 12155–12164 (2013). https://doi.org/10.1021/jp406842q

    Article  Google Scholar 

  12. Petrie, S., Millar, T., Markwick, A.: NCCN in TMC-1 and IRC+ 10216. Monthly Not. R. Astron. Soc. 341(2), 609–616 (2003)

    Google Scholar 

  13. Agúndez, M., et al.: Probing non-polar interstellar molecules through their protonated form: detection of protonated cyanogen (NCCNH\(^+\)). Astron. Astrophys. 579, L10 (2015)

    Google Scholar 

  14. Petrie, S., Osamura, Y.: NCCN and NCCCCN formation in Titan’s atmosphere: 2. HNC as a viable precursor. J. Phys. Chem. A 108(16), 3623–3631 (2004)

    Google Scholar 

  15. Podio, L., et al.: Silicon-bearing molecules in the shock L1157–B1: first detection of SiS around a Sun-like protostar. Monthly Not. R. Astron. Soc. Lett. 470(1), L16–L20 (2017)

    Google Scholar 

  16. Skouteris, D., et al.: Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study. Monthly Not. R. Astron. Soc. 482(3), 3567–3575 (2019)

    Google Scholar 

  17. Skouteris, D., Balucani, N., Faginas-Lago, N., Falcinelli, S., Rosi, M.: Dimerization of methanimine and its charged species in the atmosphere of Titan and interstellar/cometary ice analogs. Astron. Astrophys. 584, A76 (2015)

    Google Scholar 

  18. Balucani, N., Skouteris, D., Ceccarelli, C., Codella, C., Falcinelli, S., Rosi, M.: A theoretical investigation of the reaction between the amidogen, NH, and the ethyl, C\(_{2}\)H\(_{5}\), radicals: a possible gas-phase formation route of interstellar and planetary ethanimine. Mol. Astrophys. 13, 30–37 (2018)

    Google Scholar 

  19. Sleiman, C., El Dib, G., Rosi, M., Skouteris, D., Balucani, N., Canosa, A.: Low temperature kinetics and theoretical studies of the reaction CN + CH\(_{3}\)NH\(_{2}\): a potential source of cyanamide and methyl cyanamide in the interstellar medium. Phys. Chem. Chem. Phys. 20(8), 5478–5489 (2018)

    Google Scholar 

  20. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Stereoselectivity in autoionization reactions of hydrogenated molecules by metastable noble gas atoms: the role of electronic couplings. Chem. A Eur. J. 22(35), 12518–12526 (2016)

    Google Scholar 

  21. Leonori, F., et al.: Crossed-beam and theoretical studies of the S(\(^{1}\)D) + C\(_{2}\)H\(_{2}\) reaction. J. Phys. Chem. A 113(16), 4330–4339 (2009)

    Google Scholar 

  22. Bartolomei, M., et al.: The intermolecular potential in NO-N\(_{2}\) and (NO-N\(_{2}\))\(^{+}\) systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10(39), 5993–6001 (2008)

    Google Scholar 

  23. de Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12(1), 112–115 (2011)

    Google Scholar 

  24. Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S(\(^{1}\)D) + C\(_{2}\)H\(_{4}\). Phys. Chem. Chem. Phys. 11(23), 4701–4706 (2009)

    Google Scholar 

  25. de Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: an experimental and theoretical study of [S\(_{2}\)OH]\(^{0/+/-}\) species. J. Phys. Chem. A 111(28), 6526–6533 (2007)

    Google Scholar 

  26. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of Titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26

    Chapter  Google Scholar 

  27. Roothaan, C.C.J.: New developments in molecular orbital theory. Rev. Mod. Phys. 23(2), 69 (1951)

    MATH  Google Scholar 

  28. Pople, J.A., Nesbet, R.K.: Self-consistent orbitals for radicals. J. Chem. Phys. 22(3), 571–572 (1954)

    Google Scholar 

  29. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993). https://doi.org/10.1063/1.464913

    Article  Google Scholar 

  30. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: \({Ab \,Initio}\) calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Google Scholar 

  31. Grimme, S.: Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124(3), 034108 (2006)

    Google Scholar 

  32. Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011)

    Google Scholar 

  33. Goerigk, L., Grimme, S.: Efficient and accurate double-hybrid-meta-GGA density functionals- evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7(2), 291–309 (2011)

    Google Scholar 

  34. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)

    Google Scholar 

  35. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90(4), 2154–2161 (1989)

    Google Scholar 

  36. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94(14), 5523–5527 (1990)

    Google Scholar 

  37. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Ann. Rev. Phys. Chem. 32(1), 359–401 (1981)

    Google Scholar 

  38. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157(6), 479–483 (1989)

    Google Scholar 

  39. Olsen, J., Jørgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104(20), 8007–8015 (1996)

    Google Scholar 

  40. Frisch, M., et al.: Gaussian 09, Revision A. 02, 2009. Gaussian. Inc., Wallingford CT (2009)

    Google Scholar 

  41. Huang, L.C.L., Balucani, N., Lee, Y.T., Kaiser, R.I., Osamura, Y.: Crossed beam reaction of the cyano radical, CN (X \(^2\Sigma ^+\)), with methylacetylene, CH\(_{3}\)CCH (X \(^1A_{1}\)): observation of cyanopropyne, CH\(_{3}\)CCCN (X \(^1A_{1}\)), and cyanoallene, H\(_{2}\)CCCHCN (X \(^1A^{^{\prime }}\)). J. Chem. Phys. 111(7), 2857–2860 (1999)

    Google Scholar 

  42. Balucani, N., et al.: Crossed beam reaction of cyano radicals with hydrocarbon molecules. II. Chemical dynamics of 1-cyano-1-methylallene (CNCH\(_{3}\)CCCH\(_{2}\); X \(^1A^{^{\prime }}\)) formation from reaction of CN (X \(^2\Sigma ^+\)) with dimethylacetylene CH\(_{3}\)CCCH\(_{3}\) (X \(^1A^{^{\prime }}_{1}\)). J. Chem. Phys. 111(16), 7472–7479 (1999)

    Google Scholar 

  43. Huang, L.C.L., et al.: Crossed beam reaction of cyano radicals with hydrocarbon molecules. IV. Chemical dynamics of cyanoacetylene (HCCCN; X \(^1\Sigma ^+\)) formation from reaction of CN (X \(^2\Sigma ^+\)) with acetylene, C\(_{2}\)H\(_{2}\) (X \(^1\Sigma ^{+}_{g}\)). J. Chem. Phys. 113(19), 8656–8666 (2000)

    Google Scholar 

  44. Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41(16), 5473–5483 (2012)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO). E.V.F.A. thanks the Dipartimento di Ingegneria Civile ed Ambientale of University of Perugia for allocated computing time. N.F.L. thanks Perugia University for financial support through the AMIS project (“Dipartimenti di Eccellenza-2018–2022”), also thanks the Dipartimento di Chimica, Biologia e Biotecnologie for funding under the program Fondo Ricerca di Base 2017. M.R. acknowledges the project “Indagini teoriche e sperimentali sulla reattività di sistemi di interesse astrochimico” funded with Fondo Ricerca di Base 2018 of the University of Perugia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emília Valença Ferreira de Aragão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valença Ferreira de Aragão, E., Faginas-Lago, N., Rosi, M., Mancini, L., Balucani, N., Skouteris, D. (2020). A Computational Study of the Reaction Cyanoacetylene and Cyano Radical Leading to 2-Butynedinitrile and Hydrogen Radical. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12251. Springer, Cham. https://doi.org/10.1007/978-3-030-58808-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58808-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58807-6

  • Online ISBN: 978-3-030-58808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics