Skip to main content

Non-intrusive Load Monitoring Based on Regularized ResNet with Multivariate Control Chart

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12250))

Included in the following conference series:

Abstract

With the development of industry and the spread of the Smart Home, the need for power monitoring solution technologies for effective energy management systems is increasing. Of these, non-intrusive load monitoring (NILM), is an efficient way to solve the electricity consumption monitoring problem. NILM is a technique to measure the power consumption of individual devices by analyzing the power data collected through smart meters and commercial devices. In this paper, we propose a deep neural network (DNN)-based NILM technique that enables energy disaggregation and power consumption monitoring simultaneously. Energy disaggregation is performed by learning a deep residual network for performing multilabel regression. Real-time monitoring is performed using a multivariate control chart technique using latent variables extracted through weights of the trained model. The energy disaggregation and monitoring performance of the proposed method is verified using the public NILM Electricity Consumption and Occupancy (ECO) data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neenan, B., Robinson, J., Boisvert, R.N.: Residential electricity use feedback: a research synthesis and economic framework. Electric Power Research Institute, March 2009

    Google Scholar 

  2. Strbac, G.: Demand side management: benefits and challenges. Energy Policy 36(12), 4419–4426 (2008)

    Article  Google Scholar 

  3. Suzuki, K., Inagaki, S., Suzuki, T., Nakamura, H., Ito, K.: Nonintrusive appliance load monitoring based on integer programming. In: 9th 2008 SICE Annual Conference, pp. 2742–2747. IEEE (2008)

    Google Scholar 

  4. Hosseini, S.S., Agbossou, K., Kelouwani, S., Cardenas, A.: Non-intrusive load monitoring through home energy management systems: a comprehensive review. Renew. Sustain. Energy Rev. 79, 1266–1274 (2017)

    Article  Google Scholar 

  5. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)

    Article  Google Scholar 

  6. Ruano, A., Hernandez, A., Ureña, J., Ruano, M., Garcia, J.F.: NILM techniques for intelligent home energy management and ambient assisted living: a review. Energies 12(11), 2203 (2019)

    Article  Google Scholar 

  7. Sadeghianpourhamami, N., Ruyssinck, J., Deschrijver, D., Dhaene, T., Develder, C.: Comprehensive feature selection for appliance classification in NILM. Energy Build. 151, 98–106 (2017)

    Article  Google Scholar 

  8. Wang, A.L., Chen, B.X., Wang, C.G., Hua, D.: Non-intrusive load monitoring algorithm based on features of V-I trajectory. Electr. Power Syst. Res. 157, 134–144 (2018)

    Article  Google Scholar 

  9. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  10. Kelly, J., Knottenbelt, W.: Neural NILM: deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, pp. 55–64. ACM (2015)

    Google Scholar 

  11. Makonin, S., Popowich, F., Bajić, I.V., Gill, B., Bartram, L.: Exploiting HMM Sparsity to perform online real-time nonintrusive load monitoring. IEEE Trans. Smart Grid 7(6), 2575–2585 (2015)

    Article  Google Scholar 

  12. Lange, H., Bergés, M.: Efficient inference in dual-emission FHMM for energy disaggregation. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  13. He, K., Stankovic, L., Liao, J., Stankovic, V.: Non-intrusive load disaggregation using graph signal processing. IEEE Trans. Smart Grid 9(3), 1739–1747 (2018)

    Article  Google Scholar 

  14. Liu, C., Akintayo, A., Jiang, Z., Henze, G.P., Sarkar, S.: Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network. Appl. Energy 211, 1106–1122 (2018)

    Article  Google Scholar 

  15. Nakano, Y., Murata, H.: Non-intrusive electric appliances load monitoring system using harmonic pattern recognition-trial application to commercial building. In: International Conference on Electrical Engineering, Hong Kong, China (2007)

    Google Scholar 

  16. Chen, K.-L., Chang, H.-H., Chen, N.: A new transient feature extraction method of power signatures for nonintrusive load monitoring systems. In: 2013 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), pp. 79–84. IEEE (2013)

    Google Scholar 

  17. Chang, H.-H., Lian, K.-L., Su, Y.-C., Lee, W.-J.: Power-spectrum-based wavelet transform for nonintrusive demand monitoring and load identification. IEEE Trans. Ind. Appl. 3(50), 2081–2089 (2014)

    Article  Google Scholar 

  18. Liang, J., Ng, S.K.K., Kendall, G., Cheng, J.W.M.: Load signature study-part I: basic concept, structure, and methodology. IEEE Trans. Power Deliv. 25(2), 551–560 (2009)

    Article  Google Scholar 

  19. Liang, J., Ng, S.K.K., Kendall, G., Cheng, J.W.M.: Load signature study-part II: disaggregation framework, simulation, and applications. IEEE Trans. Power Deliv. 25(2), 561–569 (2010)

    Article  Google Scholar 

  20. Sirojan, T., Phung, B.T., Ambikairajah, E.: Deep neural network based energy disaggregation. In: 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), pp. 73–77. IEEE (2018)

    Google Scholar 

  21. Mauch, L., Yang, B.: A novel DNN-HMM-based approach for extracting single loads from aggregate power signals. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2384–2388. IEEE (2016)

    Google Scholar 

  22. Mauch, L., Yang, B.: A new approach for supervised power disaggregation by using a deep recurrent LSTM network. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 63–67. IEEE (2015)

    Google Scholar 

  23. He, W., Chai, Y.: An empirical study on energy disaggregation via deep learning. In: 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2016). Atlantis Press (2016)

    Google Scholar 

  24. Barsim, K.S., Yang, B.: On the feasibility of generic deep disaggregation for single-load extraction. arXiv preprint arXiv:1802.02139 (2018)

  25. Zhang, C., Zhong, M., Wang, Z., Goddard, N., Sutton, C.: Sequence-to-point learning with neural networks for non-intrusive load monitoring. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  26. Chen, K., Wang, Q., He, Z., Chen, K., Hu, J., He, J.: Convolutional sequence to sequence non-intrusive load monitoring. J. Eng. 2018(17), 1860–1864 (2018)

    Google Scholar 

  27. Çavdar, İ.H., Faryad, V.: New design of a supervised energy disaggregation model based on the deep neural network for a smart grid. Energies 12(7), 1217 (2019)

    Article  Google Scholar 

  28. Montgomery, D.C.: Introduction to Statistical Quality Control. Wiley, New York (2007)

    Google Scholar 

  29. Lowry, C.A., Montgomery, D.C.: A review of multivariate control charts. IIE Trans. 27(6), 800–810 (1995)

    Article  Google Scholar 

  30. Hotelling, H.: Multivariate Quality Control. Techniques of Statistical Analysis. McGraw-Hill, New York (1947)

    Google Scholar 

  31. Seborg, D.E., Mellichamp, D.A., Edgar, T.F., Doyle III, F.J.: Process Dynamics and Control. Wiley, New York (2010)

    Google Scholar 

  32. Ku, W., Storer, R.H., Georgakis, C.: Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst. 30(1), 179–196 (1995)

    Article  Google Scholar 

  33. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  34. Mastrangelo, C.M., Runger, G.C., Montgomery, D.C.: Statistical process monitoring with principal components. Qual. Reliab. Eng. Int. 12(3), 203–210 (1996)

    Article  Google Scholar 

  35. Box, G.E.P., et al.: Some theorems on quadratic forms applied in the study of analysis of variance problems, I. Effect of inequality of variance in the one-way classification. Ann. Math. Stat. 25(2), 290–302 (1954)

    Google Scholar 

  36. van Sprang, E.N.M., Ramaker, H.-J., Westerhuis, J.A., Gurden, S.P., Smilde, A.K.: Critical evaluation of approaches for on-line batch process monitoring. Chem. Eng. Sci. 57(18), 3979–3991 (2002)

    Article  Google Scholar 

  37. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  38. Lee, J.-M., Yoo, C., Choi, S.W., Vanrolleghem, P.A., Lee, I.-B.: Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 59(1), 223–234 (2004)

    Article  Google Scholar 

  39. Ge, Z., Yang, C., Song, Z.: Improved kernel PCA-based monitoring approach for nonlinear processes. Chem. Eng. Sci. 64(9), 2245–2255 (2009)

    Article  Google Scholar 

  40. Mansouri, M., Nounou, M., Nounou, H., Karim, N.: Kernel PCA-based GLRT for nonlinear fault detection of chemical processes. J. Loss Prev. Process Ind. 40, 334–347 (2016)

    Article  Google Scholar 

  41. Geladi, P., Kowalski, B.R.: Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1–17 (1986)

    Article  Google Scholar 

  42. Yi, J., Huang, D., He, H., Zhou, W., Han, Q., Li, T.: A novel framework for fault diagnosis using kernel partial least squares based on an optimal preference matrix. IEEE Trans. Ind. Electron. 64(5), 4315–4324 (2017)

    Article  Google Scholar 

  43. Lee, S., Kwak, M., Tsui, K., Kim, S.B.: Process monitoring using variational autoencoder for high-dimensional nonlinear processes. Eng. Appl. Artif. Intell. 83, 13–27 (2019)

    Article  Google Scholar 

  44. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  45. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585. IEEE (2017)

    Google Scholar 

  47. Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The ECO data set and the performance of non-intrusive load monitoring algorithms. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, pp. 80–89 (2014)

    Google Scholar 

  48. Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation research. In: Proceedings of the SustKDD Workshop on Data Mining Applications in Sustainability (2011)

    Google Scholar 

  49. Zheng, D., Li, F., Zhao, T.: Self-adaptive statistical process control for anomaly detection in time series. Expert Syst. Appl. 57, 324–336 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-2018-0-01417) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongpil Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, C., Jeong, J. (2020). Non-intrusive Load Monitoring Based on Regularized ResNet with Multivariate Control Chart. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics