Advertisement

External Data Monitoring Using Oracles in Blockchain-Based Process Execution

Conference paper
  • 1.4k Downloads
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 393)

Abstract

In blockchain-based process execution, operational aspects of business processes are encoded in smart contracts on blockchains, enabling powerful auditing and compliance capabilities due to the platforms’ trust and integrity guarantees. However, smart contracts are subject to the blockchain’s conceptual limitations, which particularly restrict the real-time integration of external data. This potentially leads to non-compliant runtime behavior of process instances when data updates are missed and conditional constraints are wrongly evaluated. In this paper, we analyze the semantics of established external data interaction patterns in business processes with regards to their support on blockchain platforms. We extend and propose various oracle-based implementation strategies to alleviate conceptual issues independent of the concrete blockchain used, and discuss their properties and merits.

Keywords

Smart contracts Data monitoring Oracle architectures 

References

  1. 1.
    Al-Breiki, H., Rehman, M.H.U., Salah, K., Svetinovic, D.: Trustworthy blockchain oracles: review, comparison, and open research challenges. IEEE Access 8, 85675 (2020).  https://doi.org/10.1109/ACCESS.2020.2992698CrossRefGoogle Scholar
  2. 2.
    García-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution of business processes on blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 130–146. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65000-5_8CrossRefGoogle Scholar
  3. 3.
    Heiss, J., Eberhardt, J., Tai, S.: From oracles to trustworthy data on-chaining systems. In: IEEE International Conference on Blockchain, pp. 496–503 (2019).  https://doi.org/10.1109/Blockchain.2019.00075
  4. 4.
    Klinger, P., Bodendorf, F.: Blockchain-based cross-organizational execution framework for dynamic integration of process collaborations. In: 15th International Conference on Wirtschaftsinformatik (WI), pp. 893–908 (2020).  https://doi.org/10.30844/wi_2020_i2-klinger
  5. 5.
    Ladleif, J., Weske, M., Weber, I.: Modeling and enforcing blockchain-based choreographies. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 69–85. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-26619-6_7CrossRefGoogle Scholar
  6. 6.
    Lo, S.K., Xu, X., Staples, M., Yao, L.: Reliability analysis for blockchain oracles. Comput. Electr. Eng. 83, 106582 (2020).  https://doi.org/10.1016/j.compeleceng.2020.106582CrossRefGoogle Scholar
  7. 7.
    Lu, Q., et al.: Integrated model-driven engineering of blockchain applications for business processes and asset management. CoRR abs/2005.12685 (2020). http://arxiv.org/abs/2005.12685
  8. 8.
    López-Pintado, O., Dumas, M., García-Bañuelos, L., Weber, I.: Interpreted execution of business process models on blockchain. In: IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 206–215 (2019).  https://doi.org/10.1109/EDOC.2019.00033
  9. 9.
    López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: Caterpillar: a business process execution engine on the Ethereum blockchain. Softw. Pract. Exp. 49(7), 1162–1193 (2019).  https://doi.org/10.1002/spe.2702CrossRefGoogle Scholar
  10. 10.
    Mendling, J., Weber, I., et al.: Blockchains for business process management - challenges and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 4:1–4:16 (2018).  https://doi.org/10.1145/3183367CrossRefGoogle Scholar
  11. 11.
    OMG: Business Process Model and Notation (BPMN), Version 2.0.2 (2013). http://www.omg.org/spec/BPMN/2.0.2/
  12. 12.
    Russell, N., ter Hofstede, A.H., van der Aalst, W.M., Mulyar, N.: Workflow control-flow patterns: a revised view. BPM Center Rep. BPM-06-22 (2006)Google Scholar
  13. 13.
    Russell, N., ter Hofstede, A.H., Edmond, D., van der Aalst, W.M.: Workflow data patterns. Technical report. FIT-TR-2004-01, Queensland University of Technology, Brisbane (2004)Google Scholar
  14. 14.
    Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_19CrossRefGoogle Scholar
  15. 15.
    Wöhrer, M., Zdun, U.: Design patterns for smart contracts in the ethereum ecosystem. In: IEEE International Conference on Blockchain, pp. 1513–1520 (2018).  https://doi.org/10.1109/Cybermatics_2018.2018.00255
  16. 16.
    Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A pattern collection for blockchain-based applications. In: Conference on Pattern Languages of Programs (EuroPLoP). ACM (2018).  https://doi.org/10.1145/3282308.3282312
  17. 17.
    Xu, X., et al.: A taxonomy of blockchain-based systems for architecture design. In: IEEE International Conference on Software Architecture (ICSA), pp. 243–252 (2017).  https://doi.org/10.1109/ICSA.2017.33

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany
  2. 2.Chair of Software and Business EngineeringTechnische Universitaet BerlinBerlinGermany

Personalised recommendations