Skip to main content

From Robotic Process Automation to Intelligent Process Automation

– Emerging Trends –

  • Conference paper
  • First Online:
Business Process Management: Blockchain and Robotic Process Automation Forum (BPM 2020)

Abstract

In this survey, we study how recent advances in machine intelligence are disrupting the world of business processes. Over the last decade, there has been steady progress towards the automation of business processes under the umbrella of “robotic process automation” (RPA). However, we are currently at an inflection point in this evolution, as a new paradigm called “Intelligent Process Automation” (IPA) emerges, bringing machine learning (ML) and artificial intelligence (AI) technologies to bear in order to improve business process outcomes. The purpose of this paper is to provide a survey of this emerging theme and identify key open research challenges at the intersection of AI and business processes. We hope that this emerging theme will spark engaging conversations at the RPA Forum.

Authors are in alphabetical order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://ibm.biz/ai-scenario-planning.

  2. 2.

    https://www.gartner.com/imagesrv/summits/docs/na/customer-360/C360_2011_brochure_FINAL.pdf.

References

  1. Aalst, W., La Rosa, M., Santoro, F.: Business process management - don’t forget to improve the process! Bus. Inf. Syst. Eng. 58, October 2015. https://doi.org/10.1007/s12599-015-0409-x

  2. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access (2018)

    Google Scholar 

  3. Agostinelli, S., Marrella, A., Mecella, M.: Research challenges for intelligent robotic process automation. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 12–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_2

    Chapter  Google Scholar 

  4. Agostinelli, S., Marrella, A., Mecella, M.: Towards intelligent robotic process automation for BPMers. In: AAAI IPA (2020)

    Google Scholar 

  5. Araghi, S.S.: Customizing the Composition of Web Services and Beyond. Ph.D. thesis, U. Toronto (2012)

    Google Scholar 

  6. Ayub, A., Wagner, A.: A robot that learns connect four using game theory and demonstrations. In: AAAI IPA (2020)

    Google Scholar 

  7. Baltrusaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell., February 2019. https://doi.org/10.1109/TPAMI.2018.2798607

  8. Bosco, A., Augusto, A., Dumas, M., La Rosa, M., Fortino, G.: Discovering automatable routines from user interaction logs. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 144–162. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_9

    Chapter  Google Scholar 

  9. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. (2016)

    Google Scholar 

  10. Chakraborti, T., Khazaeni, Y.: D3ba: a tool for optimizing business processes using non-deterministic planning. In: AAAI IPA (2020)

    Google Scholar 

  11. Chen, Y., Wu, E.: Monte carlo tree search for generating interactive data analysis interfaces. In: AAAI IPA (2020)

    Google Scholar 

  12. Coria, J.A.G., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4), 1189–1205 (2014)

    Article  Google Scholar 

  13. Daugherty, P.R., Wilson, H.J.: Human+ Machine: Reimagining Work in the Age of AI. Harvard Business Press, Boston (2018)

    Google Scholar 

  14. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web services. In: VLDB (2004)

    Google Scholar 

  15. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. (2017)

    Google Scholar 

  16. Ferreira, D., Rozanova, J., Dubba, K., Zhang, D., Freitas, A.: On the evaluation of intelligence process automation. In: AAAI IPA (2020)

    Google Scholar 

  17. Gao, J., van Zelst, S.J., Lu, X., van der Aalst, W.M.: Automated robotic process automation: a self-learning approach. In: OTM Confederated International Conferences (2019)

    Google Scholar 

  18. Gartner: A Future that Works: Automation, Employment, Productivity (2017)

    Google Scholar 

  19. Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process mining and robotic process automation: a perfect match. In: BPM (2018)

    Google Scholar 

  20. Goodman, B., Flaxman, S.: EU regulations on algorithmic decision-making and a “right to explanation”. In: ICML Workshop on Human Interpretability in Machine Learning (2016)

    Google Scholar 

  21. Grosskopf, A., Decker, G., Weske, M.: The Process: Business Process Modeling Using BPMN. Meghan Kiffer Press, Tampa (2009)

    Google Scholar 

  22. Han, S.: Business process automation through chatbots implementation: a case study of an it service process at philips. Thesis, TU Delft (2019)

    Google Scholar 

  23. Han, X., et al.: Automatic business process structure discovery using ordered neurons LSTM: a preliminary study. In: AAAI IPA (2020)

    Google Scholar 

  24. IPA: Proceedings of the AAAI-2020 Workshop on Intelligent Process Automation (2020)

    Google Scholar 

  25. Ito, N., Suzuki, Y., Aizawa, A.: From natural language instructions to complex processes: issues in chaining trigger action rules. In: AAAI IPA (2020)

    Google Scholar 

  26. Jan, S.T., Ishakian, V., Muthusamy, V.: AI trust in business processes: the need for process-aware explanations. In: IAAI Conference (2020)

    Google Scholar 

  27. Jarvis, P., Moore, J., Stader, J., Macintosh, A., Casson-du Mont, A., Chung, P.: Exploiting AI technologies to realise adaptive workflow systems. In: AAAI Workshop on Agent-Based Systems in the Business Context (1999)

    Google Scholar 

  28. Jenkins, P., Wei, H., Jenkins, J.S., Li, Z.: A probabilistic simulator of spatial demand for product allocation. In: AAAI IPA (2020)

    Google Scholar 

  29. Jimenez-Ramirez, A., Reijers, H.A., Barba, I., Del Valle, C.: A method to improve the early stages of the Robotic Process Automation lifecycle. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 446–461. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_28

    Chapter  Google Scholar 

  30. Katz, M., Sohrabi, S., Udrea, O.: Top-quality planning: finding practically useful sets of best plans. In: AAAI (2020)

    Google Scholar 

  31. Kavas, I.: RPA vs IPA: Intelligent Process Automation is the Next Frontier (2018)

    Google Scholar 

  32. Lacity, M.C., Willcocks, L.P.: A new approach to automating services. MIT Sloan Manage. Rev. 58, 141–149 (2017)

    Google Scholar 

  33. Lakshmanan, G., Shamsi, D., Doganata, Y., Unuvar, M., Khalaf, R.: A Markov Prediction Model for Data-Driven Semi-Structured Business Processes. Springer London Publishing (2015)

    Google Scholar 

  34. Le, V., Gulwani, S.: Flashextract: a framework for data extraction by examples. In: Proceedings of the 35th ACM SIGPLAN PLDI (2014)

    Google Scholar 

  35. Leno, V., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Automated discovery of data transformations for robotic process automation. In: AAAI IPA (2020)

    Google Scholar 

  36. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng., 1–14 (2020)

    Google Scholar 

  37. de Leoni, M., Lanciano, G., Marrella, A.: Aligning partially-ordered process-execution traces and models using automated planning. In: ICAPS (2018)

    Google Scholar 

  38. Leopold, H., van der Aa, H., Reijers, H.A.: Identifying candidate tasks for robotic process automation in textual process descriptions. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 67–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91704-7_5

    Chapter  Google Scholar 

  39. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall PTR, USA (1999)

    MATH  Google Scholar 

  40. Li, T.J.J., Radensky, M., Jia, J., Singarajah, K., Mitchell, T., Myers, B.: Interactive task and concept learning from natural language instructions and GUI demonstrations. In: AAAI IPA (2020)

    Google Scholar 

  41. López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models to chatbots. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 383–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_24

    Chapter  Google Scholar 

  42. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision mining revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_23

    Chapter  Google Scholar 

  43. Marketwatch: Business Process Management (BPM) Market 2019: Key Findings, Regional Study, Size, Growth and Global Trends by Forecast to 2023 (2019)

    Google Scholar 

  44. Marrella, A.: Automated planning for business process management. J. Data Semant. 8, 79–98 (2017)

    Article  Google Scholar 

  45. Maurya, C.K., Gantayat, N., Dechu, S., Horvath, T.: Online similarity learning with feedback for invoice line item matching. In: AAAI IPA (2020)

    Google Scholar 

  46. Leyer, M., Heckl, D., Moormann, J.: Process performance measurement. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 2. IHIS, pp. 227–241. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45103-4_9. Please check and confirm the edit made in Ref. [46].

    Chapter  Google Scholar 

  47. Miltner, A., et al.: On the fly synthesis of edit suggestions. In: OOPSLA (2019)

    Google Scholar 

  48. Moiseeva, A., Trautmann, D., Schütze, H.: Multipurpose intelligent process automation via conversational assistant. In: AAAI IPA (2020)

    Google Scholar 

  49. Muthusamy, V., Slominski, A., Isahakian, V.: Towards enterprise-ready AI deployments: minimizing the risk of consuming AI models in business applications. In: AI4I (2018)

    Google Scholar 

  50. Nguyen, P., et. al: Process trace clustering: a heterogeneous information network approach. In: SIAM SDM (2016)

    Google Scholar 

  51. Nguyen, P., et al.: Summarized: efficient framework for analyzing multidimensional process traces under edit-distance constraint. arXiv preprint (2019)

    Google Scholar 

  52. Norman, T.J., Jennings, N.R., Faratin, P., Mamdani, E.: Designing and implementing a multi-agent architecture for business process management. In: International Workshop on Agent Theories, Architectures, and Languages (1996)

    Google Scholar 

  53. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Commun. ACM (2003)

    Google Scholar 

  54. R-moreno, M.D., Borrajo, D., Cesta, A., Oddi, A.: Integrating planning and scheduling in workflow domains. Expert Syst. Appl. (2007)

    Google Scholar 

  55. Raghavan, S.: 2020 AI Predictions from IBM Research (2019)

    Google Scholar 

  56. Rao, J., Su, X.: A survey of automated web service composition methods. In: Workshop on Semantic Web Services and Web Process Composition (2004)

    Google Scholar 

  57. Rizk, Y., et al.: A unified conversational assistant framework for business process automation. In: AAAI IPA (2020)

    Google Scholar 

  58. Sarin, S.C., Varadarajan, A., Wang, L.: A survey of dispatching rules for operational control in wafer fabrication. Prod. Plan. Control 22(1), 4–24 (2011). https://doi.org/10.1080/09537287.2010.490014

  59. Shrestha, A., Pugdeethosapol, K., Fang, H., Qiu, Q.: High-level plan for behavioral robot navigation with natural language directions and r-net. In: AAAI IPA (2020)

    Google Scholar 

  60. Sohrabi, S.: Customizing the composition of actions, programs, and web services with user preferences. In: ISWC (2010)

    Google Scholar 

  61. Srivastava, B., Koehler, J.: Web service composition - current solutions and open problems. In: ICAPS Workshop on Planning for Web Services (2003)

    Google Scholar 

  62. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  63. Tuttle, D.: The Transformation of RPA to IPA: Intelligent Process Automation (2019)

    Google Scholar 

  64. Weske, M.: Business process management architectures. In: Business Process Management, pp. 333–371. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28616-2_7

  65. Weske, M.: Business Process Management (2012)

    Google Scholar 

  66. Wilson, H., Alter, A., Shukla, P.: Companies are reimagining business processes with algorithms. Harvard Bus. Rev. (2016)

    Google Scholar 

  67. Wolf, M.J., Miller, K., Grodzinsky, F.S.: Why we should have seen that coming: comments on microsoft’s tay “experiment,” and wider implications. ACM SIGCAS Comput. Soc. (2017)

    Google Scholar 

  68. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice and experience. ACM Comput. Surv. (2009). https://doi.org/10.1145/1592434.1592436

  69. Zumstein, D., Hundertmark, S.: Chatbots-an interactive technology for personalized communication, transactions and services. IADIS Int. J. WWW/Internet 15(1) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vatche Isahagian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborti, T. et al. (2020). From Robotic Process Automation to Intelligent Process Automation. In: Asatiani, A., et al. Business Process Management: Blockchain and Robotic Process Automation Forum. BPM 2020. Lecture Notes in Business Information Processing, vol 393. Springer, Cham. https://doi.org/10.1007/978-3-030-58779-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58779-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58778-9

  • Online ISBN: 978-3-030-58779-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics