Abstract
In this survey, we study how recent advances in machine intelligence are disrupting the world of business processes. Over the last decade, there has been steady progress towards the automation of business processes under the umbrella of “robotic process automation” (RPA). However, we are currently at an inflection point in this evolution, as a new paradigm called “Intelligent Process Automation” (IPA) emerges, bringing machine learning (ML) and artificial intelligence (AI) technologies to bear in order to improve business process outcomes. The purpose of this paper is to provide a survey of this emerging theme and identify key open research challenges at the intersection of AI and business processes. We hope that this emerging theme will spark engaging conversations at the RPA Forum.
Authors are in alphabetical order.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aalst, W., La Rosa, M., Santoro, F.: Business process management - don’t forget to improve the process! Bus. Inf. Syst. Eng. 58, October 2015. https://doi.org/10.1007/s12599-015-0409-x
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access (2018)
Agostinelli, S., Marrella, A., Mecella, M.: Research challenges for intelligent robotic process automation. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 12–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_2
Agostinelli, S., Marrella, A., Mecella, M.: Towards intelligent robotic process automation for BPMers. In: AAAI IPA (2020)
Araghi, S.S.: Customizing the Composition of Web Services and Beyond. Ph.D. thesis, U. Toronto (2012)
Ayub, A., Wagner, A.: A robot that learns connect four using game theory and demonstrations. In: AAAI IPA (2020)
Baltrusaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell., February 2019. https://doi.org/10.1109/TPAMI.2018.2798607
Bosco, A., Augusto, A., Dumas, M., La Rosa, M., Fortino, G.: Discovering automatable routines from user interaction logs. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 144–162. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_9
Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. (2016)
Chakraborti, T., Khazaeni, Y.: D3ba: a tool for optimizing business processes using non-deterministic planning. In: AAAI IPA (2020)
Chen, Y., Wu, E.: Monte carlo tree search for generating interactive data analysis interfaces. In: AAAI IPA (2020)
Coria, J.A.G., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4), 1189–1205 (2014)
Daugherty, P.R., Wilson, H.J.: Human+ Machine: Reimagining Work in the Age of AI. Harvard Business Press, Boston (2018)
Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web services. In: VLDB (2004)
Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. (2017)
Ferreira, D., Rozanova, J., Dubba, K., Zhang, D., Freitas, A.: On the evaluation of intelligence process automation. In: AAAI IPA (2020)
Gao, J., van Zelst, S.J., Lu, X., van der Aalst, W.M.: Automated robotic process automation: a self-learning approach. In: OTM Confederated International Conferences (2019)
Gartner: A Future that Works: Automation, Employment, Productivity (2017)
Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process mining and robotic process automation: a perfect match. In: BPM (2018)
Goodman, B., Flaxman, S.: EU regulations on algorithmic decision-making and a “right to explanation”. In: ICML Workshop on Human Interpretability in Machine Learning (2016)
Grosskopf, A., Decker, G., Weske, M.: The Process: Business Process Modeling Using BPMN. Meghan Kiffer Press, Tampa (2009)
Han, S.: Business process automation through chatbots implementation: a case study of an it service process at philips. Thesis, TU Delft (2019)
Han, X., et al.: Automatic business process structure discovery using ordered neurons LSTM: a preliminary study. In: AAAI IPA (2020)
IPA: Proceedings of the AAAI-2020 Workshop on Intelligent Process Automation (2020)
Ito, N., Suzuki, Y., Aizawa, A.: From natural language instructions to complex processes: issues in chaining trigger action rules. In: AAAI IPA (2020)
Jan, S.T., Ishakian, V., Muthusamy, V.: AI trust in business processes: the need for process-aware explanations. In: IAAI Conference (2020)
Jarvis, P., Moore, J., Stader, J., Macintosh, A., Casson-du Mont, A., Chung, P.: Exploiting AI technologies to realise adaptive workflow systems. In: AAAI Workshop on Agent-Based Systems in the Business Context (1999)
Jenkins, P., Wei, H., Jenkins, J.S., Li, Z.: A probabilistic simulator of spatial demand for product allocation. In: AAAI IPA (2020)
Jimenez-Ramirez, A., Reijers, H.A., Barba, I., Del Valle, C.: A method to improve the early stages of the Robotic Process Automation lifecycle. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 446–461. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_28
Katz, M., Sohrabi, S., Udrea, O.: Top-quality planning: finding practically useful sets of best plans. In: AAAI (2020)
Kavas, I.: RPA vs IPA: Intelligent Process Automation is the Next Frontier (2018)
Lacity, M.C., Willcocks, L.P.: A new approach to automating services. MIT Sloan Manage. Rev. 58, 141–149 (2017)
Lakshmanan, G., Shamsi, D., Doganata, Y., Unuvar, M., Khalaf, R.: A Markov Prediction Model for Data-Driven Semi-Structured Business Processes. Springer London Publishing (2015)
Le, V., Gulwani, S.: Flashextract: a framework for data extraction by examples. In: Proceedings of the 35th ACM SIGPLAN PLDI (2014)
Leno, V., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Automated discovery of data transformations for robotic process automation. In: AAAI IPA (2020)
Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng., 1–14 (2020)
de Leoni, M., Lanciano, G., Marrella, A.: Aligning partially-ordered process-execution traces and models using automated planning. In: ICAPS (2018)
Leopold, H., van der Aa, H., Reijers, H.A.: Identifying candidate tasks for robotic process automation in textual process descriptions. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 67–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91704-7_5
Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall PTR, USA (1999)
Li, T.J.J., Radensky, M., Jia, J., Singarajah, K., Mitchell, T., Myers, B.: Interactive task and concept learning from natural language instructions and GUI demonstrations. In: AAAI IPA (2020)
López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models to chatbots. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 383–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_24
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision mining revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_23
Marketwatch: Business Process Management (BPM) Market 2019: Key Findings, Regional Study, Size, Growth and Global Trends by Forecast to 2023 (2019)
Marrella, A.: Automated planning for business process management. J. Data Semant. 8, 79–98 (2017)
Maurya, C.K., Gantayat, N., Dechu, S., Horvath, T.: Online similarity learning with feedback for invoice line item matching. In: AAAI IPA (2020)
Leyer, M., Heckl, D., Moormann, J.: Process performance measurement. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 2. IHIS, pp. 227–241. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45103-4_9. Please check and confirm the edit made in Ref. [46].
Miltner, A., et al.: On the fly synthesis of edit suggestions. In: OOPSLA (2019)
Moiseeva, A., Trautmann, D., Schütze, H.: Multipurpose intelligent process automation via conversational assistant. In: AAAI IPA (2020)
Muthusamy, V., Slominski, A., Isahakian, V.: Towards enterprise-ready AI deployments: minimizing the risk of consuming AI models in business applications. In: AI4I (2018)
Nguyen, P., et. al: Process trace clustering: a heterogeneous information network approach. In: SIAM SDM (2016)
Nguyen, P., et al.: Summarized: efficient framework for analyzing multidimensional process traces under edit-distance constraint. arXiv preprint (2019)
Norman, T.J., Jennings, N.R., Faratin, P., Mamdani, E.: Designing and implementing a multi-agent architecture for business process management. In: International Workshop on Agent Theories, Architectures, and Languages (1996)
Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Commun. ACM (2003)
R-moreno, M.D., Borrajo, D., Cesta, A., Oddi, A.: Integrating planning and scheduling in workflow domains. Expert Syst. Appl. (2007)
Raghavan, S.: 2020 AI Predictions from IBM Research (2019)
Rao, J., Su, X.: A survey of automated web service composition methods. In: Workshop on Semantic Web Services and Web Process Composition (2004)
Rizk, Y., et al.: A unified conversational assistant framework for business process automation. In: AAAI IPA (2020)
Sarin, S.C., Varadarajan, A., Wang, L.: A survey of dispatching rules for operational control in wafer fabrication. Prod. Plan. Control 22(1), 4–24 (2011). https://doi.org/10.1080/09537287.2010.490014
Shrestha, A., Pugdeethosapol, K., Fang, H., Qiu, Q.: High-level plan for behavioral robot navigation with natural language directions and r-net. In: AAAI IPA (2020)
Sohrabi, S.: Customizing the composition of actions, programs, and web services with user preferences. In: ISWC (2010)
Srivastava, B., Koehler, J.: Web service composition - current solutions and open problems. In: ICAPS Workshop on Planning for Web Services (2003)
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Tuttle, D.: The Transformation of RPA to IPA: Intelligent Process Automation (2019)
Weske, M.: Business process management architectures. In: Business Process Management, pp. 333–371. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28616-2_7
Weske, M.: Business Process Management (2012)
Wilson, H., Alter, A., Shukla, P.: Companies are reimagining business processes with algorithms. Harvard Bus. Rev. (2016)
Wolf, M.J., Miller, K., Grodzinsky, F.S.: Why we should have seen that coming: comments on microsoft’s tay “experiment,” and wider implications. ACM SIGCAS Comput. Soc. (2017)
Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice and experience. ACM Comput. Surv. (2009). https://doi.org/10.1145/1592434.1592436
Zumstein, D., Hundertmark, S.: Chatbots-an interactive technology for personalized communication, transactions and services. IADIS Int. J. WWW/Internet 15(1) (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chakraborti, T. et al. (2020). From Robotic Process Automation to Intelligent Process Automation. In: Asatiani, A., et al. Business Process Management: Blockchain and Robotic Process Automation Forum. BPM 2020. Lecture Notes in Business Information Processing, vol 393. Springer, Cham. https://doi.org/10.1007/978-3-030-58779-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-58779-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58778-9
Online ISBN: 978-3-030-58779-6
eBook Packages: Computer ScienceComputer Science (R0)