Skip to main content

Physical Limitations of Accuracy of Remote Determination of Wind Speed Over the Ocean

  • Chapter
  • First Online:
Simulation of the Sea Surface for Remote Sensing

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

  • 284 Accesses

Abstract

Currently, the only way to obtain information on wind speed over the sea surface is remote sensing from spacecraft. Information is obtained using satellite observational systems: radiophysical—active (radar) and passive (radiometric) and optical—operating in the visible and infrared ranges. The remote determination of wind speed is based on the dependence of the roughness level of the sea surface, which determines the power of the signal reflected from it, on the wind speed. A factor limiting the accuracy of remote determination of wind speed is that the relationship between the level of roughness and wind speed is stochastic. Although the wind is the main physical mechanism determining the topographic structure of the sea surface, there are a number of other mechanisms, such as the current, internal waves, Langmuir circulation, etc. In addition, waves of different lengths have different adjustment times for changing wind conditions, which also reduces accuracy of remote determination of wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apel JR (1994) An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J Geophys Res 99(C8):16269–16291

    Article  Google Scholar 

  2. Babanin AV, Polnikov VG (1994) On non-Gaussian wind waves. Phys Oceanogr (3):79–82

    Google Scholar 

  3. Bass FG, Fuks IM (1979) Wave scattering by statistically rough surface. Pergamon, 540p

    Google Scholar 

  4. Bréon FM, Henriot N (2006) Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J Geophys Res Oceans 111(C06005). https://doi.org/10.1029/2005jc003343

  5. Brown GS, Stanley HR, Roy NA (1981) The wind speed measurements capability of spaceborne radar altimetry. IEEE J Oceanic Eng 6:59–63

    Google Scholar 

  6. Chelton DB (1988) WOCE/NASA altimeter algorithm workshop. U. S. WOCE Technical Rep. N. 2. U. S. Planning Office for WOCE. College Station, 70p

    Google Scholar 

  7. Chu X, He Y, Karaev VY (2012) Relationships between Ku-Band radar backscatter and integrated wind and wave parameters at low incidence angles. IEEE Trans Geosci Remote Sens 50(11):4599–4609. https://doi.org/10.1109/tgrs.2012.2191560

    Article  Google Scholar 

  8. Cox C, Munk W (1954) Measurements of the roughness of the sea surface from photographs of the sun glitter. J Optical Soc Am 44(11):838–850

    Article  Google Scholar 

  9. Danilychev MV. Kutuza BG. Nikolayev AG (2009) The use of the Kirchhoff method for practical calculations in microwave radiometry of rough sea surface. Radiotekh i Elektron J Commun Technol Electron 54(8):915–926

    Google Scholar 

  10. Dobson E, Monaldo F, Goldhirsh J, Wilkerson J (1987) Validation of Geosat altimeter-derived wind speeds and significant wave heights using buoy data. Johns Hopkins APL Tech Dig 8:222–233. https://doi.org/10.1029/jc092ic10p10719

  11. Ebuchi N, Graber HC, Caruso MJ (2002) Evaluation of wind vectors observed by QuikSCAT/sea-winds using ocean Buoy data. J Atmos Oceanic Technol 19(12):2049–2062. https://doi.org/10.1175/1520-0426(2002)019%3c2049:EOWVOB%3e2.0.CO;2

    Article  Google Scholar 

  12. Freilich MH, Dunbar RS (1999) The accuracy of the NSCAT 1 vector winds: comparisons with National Data Buoy Center buoys. J Geophys Res 104(C5):11231–11246. https://doi.org/10.1029/1998JC900091

    Article  Google Scholar 

  13. Freilich MH, Vanhoff BA (2003) The relationship between winds, surface roughness, and radar backscatter at low incidence angles from TRMM precipitation radar measurements. J Atmos Oceanic Technol 20(4):549–562

    Article  Google Scholar 

  14. Glazman RE, Greysukh A (1993) Satellite altimeter measurements of surface wind. J Geophys Res 98(C2):2475–2483

    Article  Google Scholar 

  15. Gourrion J, Vandemark D, Bailey S, Chapron B, Gommenginger GP, Challenor PG, Srokosz MA (2002) A two-parameter wind speed algorithm for Ku-band altimeters. J Atmos Oceanic Technol 19(12):2030–2048. https://doi.org/10.1175/1520-0426(2002)019%3c2030:atpwsa

    Article  Google Scholar 

  16. Grishechkin BY, Baskakov AI (2010) The potential of a space altimeter when measuring significant wave height, vol XXXVIII, Part 7A. In: ISPRS TC VII symposium—100 years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, pp 49–52

    Google Scholar 

  17. Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K, Ewing JA, Gienapp H, Hasselmann DE, Kruseman P, Meerburg A, Mller P, Olbers DJ, Richter K, Sell W, Walden H (1973) Measurements of wind-wave growth and swell decay during the joint North Sea Wave Project (JONSWAP). Ergnzungsheft zur Deutsch Hydrographischen Z Reihe A (8)(12):1–95

    Google Scholar 

  18. Karaev VY, Kanevsky MB, Balandina GN, Cotton PD, Challenor PG, Gommenginger CP, Srokosz MA (2002) On the problem of the near ocean surface wind speed retrieval by radar altimeter: a two-parameter algorithm. Int J Remote Sens 23(16):3263–3283

    Google Scholar 

  19. Karaev VY, Kanevsky MB, Meshkov EM, Titov VI, Balandina GN (2008) Measurement of the variance of water surface slopes by a radar: verification of algorithms. Radiophys Quantum Electron 51(5):1–12

    Google Scholar 

  20. Khristoforov GN, Zapevalov AS, Smolov VE (1987) On the limiting accuracy of satellite scatterometer estimates of wind-speed over the ocean. Sov J Remote Sens 7(2):287–300

    Google Scholar 

  21. Khristoforov GN, Zapevalov AS, Smolov VE (1994) The relationship between the amplitudinal characteristics of the high-frequency spectral components of wind-generated waves and the wind velocity over the sea. Phys Oceanogr 5(3):221–230

    Article  Google Scholar 

  22. Khristophorov GN, Zapevalov AS, Babiy MV (1992) Statistics of sea-surface slope for different wind speeds. Okeanologiya 32(3):452–459

    Google Scholar 

  23. Kudryavtsev V, Hauser D, Caudal G, Chapron B (2002) A semiempirical model of the normalized radar cross-section of the sea surface, 1, Background model. J Geophys Res 107. https://doi.org/10.1029/2001jc001003

  24. Lavrova OY, Kostianoy AG, Lebedev SA, Mityagina VI, Ginzburg AI, Sheremet NA (2011) Complex satellite monitoring of the russian seas. Institute of Space Research of the Russian Academy of Sciences, Moscow, 480p

    Google Scholar 

  25. Liu Y, Su M-Y, Yan X-H, Liu WT (2000) The mean-square slope of ocean surface waves and its effects on radar backscatter. J Atmos Oceanic Technol 17:1092–1105

    Google Scholar 

  26. Longuet-Higgins MS (1963) The effect of non-linearities on statistical distribution in the theory of sea waves. J Fluid Mech 17(3):459–480

    Article  Google Scholar 

  27. Moore RK, Pierson WJ (1966) Measuring sea state and estimating surface winds from a polar orbiting satellite. In: Proceedings of international symposium on electromagnetic sensing of the earth from satellites. Miami Beach, FL. November 22–24, pp R1–R28

    Google Scholar 

  28. Moore RK, Claassen JP, Cook AC, Fayman DL, Holtzman JC, Sobti A, Ulaby FT, Young JD, Hatcher NM, Spencer WJ (1974) Simultaneous active and passive microwave response of the earth—the Skylab radar experiment. In: Proceedings of 9th international symposium on remote sensing of environment. University of Michigan, Ann. Arbor, MI, pp. 189–217

    Google Scholar 

  29. Pierson WI, Moskovitz L (1964) A prosed spectral form for fully developed wind seas based on the similarity method of S.A. Kitaigorodsii. J Geophys Res 69(24):5181–5190

    Google Scholar 

  30. Queffeulou P (2004) Long-term validation of wave height measurements from altimeters. Mar Geodesy 27:495–510

    Google Scholar 

  31. Quilfen Y, Chapron B, Vandemark D (2001) The ERS scatterometer wind measurement accuracy: evidence of seasonal and regional biases. J Atmosp Oceanic Technol 18(10):1684–1697. https://doi.org/10.1175/1520-0426018%3c1684:TESWMA%3e2.0.CO;2

    Article  Google Scholar 

  32. Valenzuela G (1978) Theories for the interaction of electromagnetic and ocean waves—a review. Bound Layer Meteorol 13(1–4):61–85

    Google Scholar 

  33. Walsh EJ (1979) Extraction of ocean wave height and dominant wavelength from GEOS 3 altimeter data. J Geophys Res 84(B8):4003–4010. https://doi.org/10.1029/JB084iB08p04003

    Article  Google Scholar 

  34. Wilson JJW, Anderson C, Baker MA, Bonekamp H, Saldaca JF (2010) Radiometric calibration of the advanced wind scatterometer radar ASCAT carried onboard the METOP-a satellite. IEEE Trans Geosci Remote Sens 48(8):3236–3255. https://doi.org/10.1109/TGRS.2010.2045763

    Article  Google Scholar 

  35. Zapevalov AS (2009) Bragg scattering of centimeter electromagnetic radiation from the sea surface: the effect of waves longer than Bragg components. Izv Atmos Oceanic Phys 45(2):253–261

    Article  Google Scholar 

  36. Zapevalov AS (2002) Statistical characteristics of the moduli of slopes of the sea surface. Phys Oceanogr 12(1):24–31

    Google Scholar 

  37. Zapevalov AS (2008) Statistical models of the sea surface in problems of acoustic and electromagnetic radiation scattering. Manuscript to claim the academic degree of doctor of physico-mathematical sciences on the speciality 04.00.22—geophysics. Marine Hydrophysical Institute of the National Academy of Sciences of Ukraine, Sebastopol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zapevalov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zapevalov, A., Pokazeev, K., Chaplina, T. (2021). Physical Limitations of Accuracy of Remote Determination of Wind Speed Over the Ocean. In: Simulation of the Sea Surface for Remote Sensing. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-030-58752-9_10

Download citation

Publish with us

Policies and ethics