Skip to main content

Swarm Intelligence: A Review of Optimization Algorithms Based on Animal Behavior

  • Chapter
  • First Online:
Recent Advances of Hybrid Intelligent Systems Based on Soft Computing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 915))

Abstract

In this paper a review about the optimization algorithms based on swarm intelligence (SI) with animal behavior is presented. In this review, are analyzed the most popular algorithms such as Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Bee Colony Optimization (BCO) and the Bat algorithm (BA). These algorithms are mentioned in the paper because they inspired on animal behavior demonstrating be useful for solving optimization problems in several applications, and also the algorithms are inspired in swarm intelligence and share similarities in some aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abdel-Basset, L.A. Shawky, Flower pollination algorithm: a comprehensive review. Artif. Intell. Rev. 52(4), 2533–2557 (2019). https://dx.doi.org/10.1007/s10462-018-9624-4

  2. F. Ahmadizar, H. Soltanpanah, Reliability optimization of a series system with multiple-choice and budget constraints using an efficient ant colony approach. Expert Systems with Applications 38(4), 3640–3646 (2011). https://doi.org/10.1016/j.eswa.2010.09.018

    Article  Google Scholar 

  3. J. Alcalá-Fdez, R. Alcalá, M.J. Gacto, F. Herrera, Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets Syst. 160(7), 905–921 (2009). https://doi.org/10.1016/j.fss.2008.05.012

    Article  MathSciNet  MATH  Google Scholar 

  4. A.M. Alhroob, W.J. Alzyadat, I.H. Almukahel, G.M. Jaradat, Adaptive fuzzy map approach for accruing velocity of big data relies on fireflies algorithm for decentralized decision making. IEEE Access 8, 21401–21410 (2020)

    Article  Google Scholar 

  5. P.J. Angeline, Evolutionary optimization versus particle swarm optimization: philosophy and performance differences, evolutionary programming VII. Lect. Notes Comput. Sci. 1447, 601–610 (1998)

    Article  Google Scholar 

  6. P.J. Angeline, Using Selection to Improve Particle Swarm Optimization, in Proceedings 1998 IEEE World Congress on Computational Intelligence (1998), pp. 84–89

    Google Scholar 

  7. G.A. Angulo, O. Castillo, A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Comput. 22 (2016). https://doi.org/10.1007/s00500-016-2354-0

  8. R. Argha, D. Diptam, C. Kaustav, Training artificial neural network using particle swarm optimization. Int. J. Adv. Res. Comput. Sci. Softw. Eng. Res. 3 (2013)

    Google Scholar 

  9. A. Askarzadeh, E. Rashedi, Harmony Search Algorithm (2017). https://doi.org/10.4018/978-1-5225-2322-2.ch001

  10. N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, M. Tuba, optimizing convolutional neural network hyperparameters by enhanced swarm intelligence metaheuristics. Algorithms 13, 67 (2020). https://doi.org/10.3390/a13030067

  11. G. Beni, The concept of cellular robotic system, in Proceedings of the 1988 IEEE International Symposium on Intelligent Control (IEEE Computer Society Press, 1988), pp. 57–62

    Google Scholar 

  12. G. Beni, S. Hackwood, Stationary waves in cyclic swarms, in Proceedings of the 1992 International Symposium on Intelligent Control (IEEE Computer Society Press, 1992), pp. 234–242

    Google Scholar 

  13. G. Beni, J. Wang, Swarm intelligence, in Proceedings of the Seventh Annual Meeting of the Robotics Society of Japan (RSJ Press, 1989), pp. 425–428

    Google Scholar 

  14. M.J. Blondin, P.M. Pardalos, A holistic optimization approach for inverted cart-pendulum control tuning. Soft. Comput. 24(6), 4343–4359 (2020). https://doi.org/10.1007/s00500-019-04198-7

    Article  Google Scholar 

  15. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence (Oxford University Press, 1997)

    Google Scholar 

  16. B. Bullnheimer, G. Kotsis, C. Strauss, Parallelization strategies for the ant system. Kluwer Series on Applied Optimization (1997), pp. 87–100

    Google Scholar 

  17. O. Castillo, P. Melin, Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Trans. Neural Netw. 13(6), 1395–1408 (2002). https://dx.doi.org/10.1109/tnn.2002.804316

  18. O. Castillo, H. Neyoy, M. Soriaj, García, F. Valdez, Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot. Int. J. Adv. Robot. Syst. (2013)

    Google Scholar 

  19. O. Castillo, G.A. Angulo, A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf. Sci. 460–461 (2017). https://doi.org/10.1016/j.ins.2017.10.032

  20. O. Castillo, F. Valdez, J. Soria, G.A. Angulo, P. Ochoa, C. Peraza, Comparative study in fuzzy controller optimization using bee colony, differential evolution, and harmony search algorithms. Algorithms 12, 9 (2018). https://doi.org/10.3390/a12010009

  21. Y.H. Chang, C.W. Chang, C.W. Tao, H.W. Lin, Jin-Shiuh Taur, Fuzzy sliding-mode control for ball and beam system with fuzzy ant colony optimization. Expert Syst. Appl. 39(3), 3624–3633 (2012)

    Article  Google Scholar 

  22. G. Chen, Z. Li, Z. Zhang, S. Li, An improved ACO algorithm optimized fuzzy PID controller for load frequency control in multi area interconnected power systems. IEEE Access. 8, 6429–6447 (2020)

    Article  Google Scholar 

  23. H. Chen, X. Xu, L. Zhang, A new model for predicting sulfur solubility in sour gases based on hybrid intelligent algorithm. Fuel 262, 116550 (2019). https://doi.org/10.1016/j.fuel.2019

  24. S.S. Choong, L.P. Wong, C. Lim, A dynamic fuzzy-based dance mechanism for the bee colony optimization algorithm. Comput. Intell. 34, 999–1024 (2018). https://doi.org/10.1111/coin.12159

  25. S.C. Chu, P.W. Tsai, J.S. Pan, Cat Swarm Optimization (2006), pp. 854–858. https://doi.org/10.1007/11801603_94

  26. A. Colorni, M., Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in Proceedings of the First European Conference on Artificial Life, ed. by F.V.P. Bourgine (MIT Press, 1992), pp. 134–142

    Google Scholar 

  27. A. Colorni, M. Dorigo, V. Maniezzo, Genetic algorithms: a new approach to the timetable problem, eds.by In: M. Akgül, H.W. Hamacher, S.Tüfekçi Combinatorial Optimization. NATO ASI Series (Series F: Computer and Systems Sciences), vol 82. (Springer, Berlin, Heidelberg, 1992). https://doi.org/10.1007/978-3-642-77489-8_14

  28. M. Dorigo, Learning by probabilistic boolean networks, in Proceedings of the IEEE International Conference on Neural Networks (1994), pp. 887–891

    Google Scholar 

  29. M. Dorigo, G.D. Caro, Ant colony optimization: a new meta-heuristic. Proc. IEEE Congr. Evol. Comput. 2, 1477 (1999)

    Google Scholar 

  30. M. Dorigo, G.D. Caro, The ant colony optimization meta-heuristic, in New Ideas in Optimization (1999), pp. 11–32

    Google Scholar 

  31. M. Dorigo, L. Gambardella, A study of some properties of ant-Q, in Proceedings of the Fourth International Conference on Parallel Problem Solving From Nature (1996), pp. 656–665

    Google Scholar 

  32. M. Dorigo, M. Birattari, T. Stützle, Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2006). https://doi.org/10.1109/mci.2006.329691

  33. M. Dorigo, E. Bonabeau, G. Theraulaz, Ant algorithms and stigmergy. Future Gener. Comput. Syst. 16(8), 851–871 (2000). https://doi.org/10.1016/s0167-739x(00)00042-x

    Article  Google Scholar 

  34. M. Dorigo, L.M. Gambardella, Ant colonies for the travelling salesman problem. Biosystems 43(2), 73–81 (1997). https://dx.doi.org/10.1016/s0303-2647(97)01708-5

  35. R.C. Eberhart, Kennedy, A new optimizer using particle swarm theory, in Proceedings of Sixth International Symposium on Micro Machine and Human Science (1995), pp. 33–43

    Google Scholar 

  36. E.M. El-Gendy, M.M. Saafan, M.S. Elksas, S.F. Saraya, F.F.G. Areed, Applying hybrid genetic–PSO technique for tuning an adaptive PID controller used in a chemical process. Soft. Comput. 24(5), 3455–3474 (2020). https://doi.org/10.1007/s00500-019-04106-z

    Article  Google Scholar 

  37. H. Fahim, W. Li, S. Javaid, M.M.S. Fareed, G. Ahmed, M.K. Khattak, Fuzzy logic and bio-inspired firefly algorithm based routing scheme in intrabody nanonetworks. Sensors 19(24), 5526–5526 (2019). https://dx.doi.org/10.3390/s19245526

  38. I. Fister, X.S. Yang, J. Brest, I. Fister, Modified firefly algorithm using quaternion representation. Expert Syst. Appl. 40(18), 7220–7230 (2013). https://doi.org/10.1016/j.eswa.2013.06.070

  39. C. Gallo, V. Capozzi, A simulated annealing algorithm for scheduling problems. J. Appl. Math. Phys. 7 (2019). https://doi.org/10.4236/jamp.2019.simann

  40. A. Gandomi, A. Alavi, Krill Herd algorithm: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. IF = 2.806 17, 4831–4845 (2012). https://doi.org/10.1016/j.cnsns.2012.05.010

  41. M.F. Ganji, M.S. Abadeh, A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis. Expert Syst. Appl. 38(12), 14650–14659 (2011). https://dx.doi.org/10.1016/j.eswa.2011.05.018

  42. Z.W. Geem, Novel derivative of harmony search algorithm for discrete design variables. Appl. Math. Comput. 199(1), 223–230 (2008). https://dx.doi.org/10.1016/j.amc.2007.09.049

  43. F. Glover, Tabu search—Part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  Google Scholar 

  44. N. Goel, D. Gupta, S. Goel, Performance of Firefly and Bat Algorithm for Unconstrained Optimization Problems (Department of Computer Science, Maharaja Surajmal Institute of. Technology GGSIP University C-4, 2013)

    Google Scholar 

  45. R. Greco, I. Vanzi, New few parameters differential evolution algorithm with application to structural identification. J. Traffic Transp. Eng. (Eng. Edn.) 6(1), 1–14 (2019). https://doi.org/10.1016/j.jtte.2018.09.002

    Article  Google Scholar 

  46. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (University of Michigan Press, Ann Arbor, MI, 1975)

    MATH  Google Scholar 

  47. H.S. Hosseini, The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int. J. Bio-Inspired Comput. 1(1/2), 71–71 (2009). https://dx.doi.org/10.1504/ijbic.2009.022775

  48. A.S. Joshi, O. Kulkarni, G.M. Kakandikar, V.M. Nandedkar, Cuckoo search optimization a review. Mater. Today: Proc. 4(8), 7262–7269 (2017). https://doi.org/10.1016/j.matpr.2017.07.055

    Article  Google Scholar 

  49. D. Karaboga, B. Akay, A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Review 31(1–4), 61–85 (2009). https://doi.org/10.1007/s10462-009-9127-4

  50. J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks (1995), pp. 1942–1948

    Google Scholar 

  51. K. Khan, A. Sahai, A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context. Int. J. Intell. Syst. Appl. 4(7), 23–29 (2012). https://dx.doi.org/10.5815/ijisa.2012.07.03

  52. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, in Science. vol. 220 (American Association for the Advancement of Science (AAAS), 1983), pp. 671–680. https://doi.org/10.1126/science.220.4598.671

  53. G. Komarasamy, A. Wahi, An optimized K-means clustering technique using bat algorithm. Eur. J. Sci. Res. 84(2), 263–273 (2012)

    Google Scholar 

  54. K.N. Krishnanand, D. Ghose, Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications (2006). https://dx.doi.org/10.3233/mgs-2006-2301

  55. E. Kuliev, V. Kureichik, Monkey search algorithm for ECE components partitioning. J. Phys.: Conf. Ser. 1015, 042026 (2018). https://doi.org/10.1088/1742-6596/1015/4/042026

  56. C. Li, T. Wu, Adaptive fuzzy approach to function approximation with PSO and RLSE. Expert Syst. Appl. 38, 13266–13273 (2011)

    Article  Google Scholar 

  57. L. Li, W. Pedrycz, T. Qu, Z. Li, Fuzzy associative memories with autoencoding mechanisms. Knowl.-Based Syst. 191, 105090 (2020). https://doi.org/10.1016/j.knosys.2019.105090

    Article  Google Scholar 

  58. Y.L. Li, Rong, The reliable design of one-piece flow production system using fuzzy ant colony optimization. Comput. Oper. Res. 36(5), 1656–1663 (2009)

    Article  Google Scholar 

  59. N.F.D. Lima, T.B. Ludermir, Frankenstein PSO applied to neural network weights and architectures, in Evolutionary Computation (CEC) (2011), pp. 2452–2456

    Google Scholar 

  60. J.H. Lin, C.W. Chou, C.H. Yang, H.L. Tsai, A chaotic Levy flightbat algorithm for parameter estimation in nonlinear dynamic biological systems. J. Comput. Inf. Technol. 2(2), 56–63 (2012)

    Google Scholar 

  61. J. Luan, Z. Yao, F. Zhao, X. Song, A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony optimization. Mathem. Comput. Simul. 156, 294–309 (2019). https://doi.org/10.1016/j.matcom.2018.08.011

  62. P. Lučić, D. Teodorović, Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence, in Preprints of the RISTAN IV Triennial Symposium on Transportation Analysis (Sao Miguel, 2001), pp. 441–445

    Google Scholar 

  63. P. Lučić, D. Teodorović, Transportation modeling: an artificial life approach, in Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (2002), pp. 216–223

    Google Scholar 

  64. P. Lučić, D. Teodorović, Vehicle routing problem with uncertain demand at nodes: the bee system and fuzzy logic approach, in Fuzzy Sets in Optimization, ed. by L.J. Verdegay (Springer, 2003), pp. 67–82

    Google Scholar 

  65. P. Lučić, D. Teodorović, Computing with bees: attacking complex transportation engineering problems. Int. J. Artif. Intell. Tools 12(03), 375–394 (2003), https://dx.doi.org/10.1142/s0218213003001289

  66. P. Manikannan, K. Udhayakumar, P. Pugazhendiran (2020). https://doi.org/10.17559/TV-20171029140308

  67. G. Marković, D. Teodorović, V.A. Raspopović, Routing and wavelength assignment in all-optical networks based on the bee colony optimization. AI Commun. 20, 273–285 (2007)

    Google Scholar 

  68. P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, José Mario García Valdez: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 40(8), 3196–3206 (2013)

    Article  Google Scholar 

  69. S. Mirjalili, The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  70. P. Musikapun, P. Pongcharoen, Solving multi-stage multi-machine multi-product scheduling problem using bat algorithm, in 2nd International Conference on Management and Artificial Intelligence (IPEDR), vol. 35 (IACSIT Press, 2012), pp. 98–102

    Google Scholar 

  71. J. Ocenasek, J. Schwarz, Estimation of distribution algorithm for mixed continuous-discrete optimization problems, in 2nd Euro-International Symposium on Computational Intelligence (2002), pp. 227–232

    Google Scholar 

  72. A. Perianes-Rodriguez, L. Waltman, N.J. van Eck, Constructing bibliometric networks: a comparison between full and fractional counting. J. Inf. 10(4), 1178–1195 (2016). https://dx.doi.org/10.1016/j.joi.2016.10.006

  73. N. Priyadarshi, S. Padmanaban, J.B. Holm-Nielsen, F. Blaabjerg, M.S. Bhaskar, An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Syst. J. 14(1), 1218–1229 (2020)

    Article  Google Scholar 

  74. K.S. Rajesh, S.S. Dash, R. Rajagopal, Hybrid improved firefly-pattern search optimized fuzzy aided PID controller for automatic generation control of power systems with multi-type generations. Swarm Evol. Comput. 44, 200–211 (2019). https://doi.org/10.1016/j.swevo.2018.03.005

  75. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009). https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  76. A. Ratre, Taylor series-based compressive approach and firefly support vector neural network for tracking and anomaly detection in crowded videos, Avinash Ratre (Corresponding author). J. Eng. Res. 7(4), 115–137 (2019)

    Google Scholar 

  77. R.G. Reynolds, An introduction to cultural algorithms, in Proceedings of the 3rd Annual Conference on Evolutionary Programming (1994), pp. 131–139

    Google Scholar 

  78. D. Rodrigues, L. Pereira, R. Nakamura, K. Costa, X. Yang, A. Souza, João Paulo Papa, A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest. Bauru, Brazil (2013)

    Google Scholar 

  79. Y. Shang, H. Nguyen, X. Bui, A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Nat. Resour. Res. 29, 723–737 (2020)

    Article  Google Scholar 

  80. S.W. Sharshir, M.E. Abd el aziz, M. Shafik, Enhancing thermal performance and modeling prediction of developed pyramid solar still utilizing a modified random vector functional link. Solar Energy 198, 399–409 (2020). https://doi.org/10.1016/j.solener.2020.01.061

  81. T. Stützle, MAX-MIN Ant System for the Quadratic Assignment Problem (FG Intellektik, FB Informatik, TU Darmstadt, Germany, 1997)

    Google Scholar 

  82. T. Stützle, F. Intellektik, T.U. Informatik, Darmstadt: an ant approach to the flow shop problem. Germany (1997)

    Google Scholar 

  83. I.B.M. Taha, A. Hoballah, S.S.M. Ghoneim, Optimal ratio limits of rogers’ four-ratios and IEC 60599 code methods using particle swarm optimization fuzzy-logic approach. IEEE Trans. Dielectr. Electr. Insul. 27(1), 222–230 (2020)

    Article  Google Scholar 

  84. M.H.A. Talib, I.Z.M. Darus, P.M. Samin, Fuzzy logic with a novel advanced firefly algorithm and sensitivity analysis for semi-active suspension system using magneto-rheological damper. J. Ambient Intell. Hum. Comput. 10(8), 3263–3278 (2019). https://dx.doi.org/10.1007/s12652-018-1044-4

  85. W.J. Tang, Q.H. Wu, J.R. Saunders, Bacterial foraging algorithm for dynamic environments, in IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel (2006)

    Google Scholar 

  86. D. Teodorovic, M. Dell’orco, Bee colony optimization—A cooperative learning approach to complex transportation problems. Proceedings of the 16th Mini-EURO Conference on Advanced OR and AI Methods in Transportation, (Poznan, 2005), 13–16 September. pp. 51-60.

    Google Scholar 

  87. D. Teodorović, Transport modeling by multi-agent systems: a swarm intelligence approach. Transp. Plan. Tech 26, 289–312 (2003)

    Google Scholar 

  88. D. Teodorović, M. Dell’Orco, Bee colony optimization—A cooperative learning approach to complex transportation problems, in Advanced OR and AI Methods in Transportation. Proceedings of the 10th Meeting of the EURO Working Group on Transportation (2005), pp. 51–60

    Google Scholar 

  89. D. Teodorović, P. Lučić, G. Marković, M.D. Orco, Bee colony optimization: principles and applications, in Proceedings of the Eight Seminar on Neural Network Applications in Electrical Engineering – NEUREL, ed, by B. Reljin, S. Stanković (2006), pp. 151–156

    Google Scholar 

  90. D. Teodorović, M. Šelmić, The BCO algorithm for the p median problem, in Proceedings of the XXXIV Serbian Operations Research Conference (2007)

    Google Scholar 

  91. D. Teodorović, Bee colony optimization (BCO), in Innovations in Swarm Intelligence, ed. by In: C.P. Lim, L.C. Jain, S. Dehuri (Springer, Berlin, Heidelberg, 2009), pp. 39–60. https://doi.org/10.1007/978-3-642-04225-6_3

  92. F. Valdez, A review of optimization swarm intelligence-inspired algorithms with type-2 fuzzy logic parameter adaptation. Soft. Comput. 24(1), 215–226 (2020). https://doi.org/10.1007/s00500-019-04290-y

    Article  Google Scholar 

  93. F. Valdez, P. Melin, O. Castillo, Evolutionary method combining particle swarm optimisation and genetic algorithms using fuzzy logic for parameter adaptation and aggregation: the case neural network optimisation for face recognition (2010). https://dx.doi.org/10.1504/ijaisc.2010.032514

  94. F. Valdez, P. Melin, O. Castillo, O. Montiel, A new evolutionary method with a hybrid approach combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making (2008)

    Google Scholar 

  95. F. Valdez, J. Vázquez, F. Gaxiola, Fuzzy dynamic parameter adaptation in ACO and PSO for designing fuzzy controllers: the cases of water level and temperature control. Adv. Fuzzy Syst. 2018, 1–19 (2018). https://doi.org/10.1155/2018/1274969

  96. T. Qi Wu, M. Yao, J. Hua Yang, Dolphin swarm algorithm. Front. Inf. Technol. Electron. Eng. 17, 717–729 (2016). https://doi.org/10.1631/fitee.1500287

  97. X. Yang, A New Metaheuristic Bat-Inspired Algorithm (Trumpington Street, Cambridge CB2 1PZ, UK, 2010)

    Google Scholar 

  98. X. Yang, Bat Algorithm: Literature Review and Applications (School of Science and Technology. Middlesex University, The Burroughs, London NW4 4BT, United Kingdom, 2013)

    Google Scholar 

  99. X. Yang, S. Deb, Cuckoo search via Lévy flights, in 2009 World Congress on Nature Biologically Inspired Computing (NaBIC) (2009), pp. 210–214

    Google Scholar 

  100. X.S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization. Studies in Computational Intelligence, vol. 284 (Springer, 2010), pp. 65–74

    Google Scholar 

  101. X.S. Yang, Firefly Algorithms for Multimodal Optimization, vol. 5792 (2010). https://doi.org/10.1007/978-3-642-04944-6_14

  102. X.S. Yang, Nature-Inspired Metaheuristic Algorithms (2010)

    Google Scholar 

  103. X.S. Yang, Nature-Inspired Optimization Algorithms (Elsevier, Oxford, 2014). https://doi.org/10.1016/b978-0-12-416743-8.00016-6

  104. X.S. Yang, S. Deb, Eagle strategy using Lévy Walk and Firefly algorithms for stochastic optimization, in Studies in Computational Intelligence, vol. 284 (2010), pp. 101–111. https://doi.org/10.1007/978-3-642-12538-6_9

  105. Z. Zhang, T. Wang, Y. Chen, J. Lan, Design of type-2 fuzzy logic systems based on improved ant colony optimization. Int. J. Control Autom. Syst. 17 (2019). https://doi.org/10.1007/s12555-017-0451-1

Download references

Acknowledgements

We would like to express our gratitude to CONACYT, Tecnologico Nacional de Mexico/Tijuana Institute of Technology for the facilities and resources granted for the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fevrier Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valdez, F. (2021). Swarm Intelligence: A Review of Optimization Algorithms Based on Animal Behavior. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Recent Advances of Hybrid Intelligent Systems Based on Soft Computing. Studies in Computational Intelligence, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-58728-4_16

Download citation

Publish with us

Policies and ethics