Skip to main content

Optimization of Fuzzy Trajectory Tracking in Autonomous Mobile Robots Based on Bio-inspired Algorithms

  • Chapter
  • First Online:
Recent Advances of Hybrid Intelligent Systems Based on Soft Computing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 915))

Abstract

In this paper a comparison between the Bee Colony Optimization (BCO) and the Chicken Search Optimization (CSO) algorithms in optimal fuzzy control design is presented. The comparison is based on solving the problem to find the optimal distribution on the Membership Functions (MFs) of fuzzy controllers for mobile robots. Optimization in the structure and parameters for designing for a fuzzy tracking controller is presented. A new CSO algorithm for the optimization in Fuzzy Logic Controllers (FLC) is presented. The main aim is to use the two bio-inspired algorithms individually to improve of trajectories of an Autonomous Mobile Robot. CSO algorithm shows better results when compared to BCO in the simulation results for this control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Amador-Angulo, O. Mendoza, J.R. Castro, A. Rodríguez-Díaz, P. Melin, O. Castillo, Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. Sensors 16(9), 1458 (2016)

    Article  Google Scholar 

  2. O. Castillo, R. Martinez-Marroquin, P. Melin, F. Valdez, J. Soria, Comparative study of bio inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf. Sci. 192, 19–38 (2012)

    Article  Google Scholar 

  3. E. Cuevas, H. Sossa, A comparison of nature inspired algorithms for multi-threshold image segmentation. Expert Syst. Appl. 40(4), 1213–1219 (2013)

    Article  Google Scholar 

  4. F. Olivas, et al., Comparative study of type-2 fuzzy particle swarm, bee colony and bat algorithms in optimization of fuzzy controllers. Algorithms 10(3), 101 (2017)

    Google Scholar 

  5. A. Chatterjee, M. Biswas, D. Maji, D. Jana, S. Brojabasi, G. Sarkar, S. Das, Discrete wavelet transform based vi image fusion with artificial bee colony optimization, in Computing and Communication Workshop and Conference (CCWC), 2017 IEEE 7th Annual (IEEE, 2017), pp. 1–4

    Google Scholar 

  6. M. Doringo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996)

    Article  Google Scholar 

  7. L. Guo, G.G. Wang, A.H. Gandomi, A.H. Alavi, H. Duan, A new improved krill herd algorithm for global numerical optimization. Neurocomputing 138, 392–402 (2014)

    Article  Google Scholar 

  8. A. Jovanovic, M. Nikolic, D. Teodorovic, Area-wide urban traffic control: a bee colony optimization approach. Transp. Res. Part C: Emerging Technol. 77, 329–350 (2017)

    Article  Google Scholar 

  9. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  10. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Networks (December 1995), pp. 1942–1948

    Google Scholar 

  11. A.H. Gandomi, X.-S. Yang, A.H. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Article  Google Scholar 

  12. T.S. Gorripotu, R.K. Sahu, S. Panda, Firefly algorithm optimised PID controller for automatic generation control with redox flow battery. Int. J. Comput. Syst. Eng. 3(1–2), 48–57 (2017)

    Article  Google Scholar 

  13. M. Mao, L. Zhang, B.V.P. Chong, M. Musembi, Q. Duan, Artificial fish swarm algorithm based-maximum power generation for grid-connected PV panels, in 2017 UKSim-AMSS 19th International Conference on Modelling & Simulation (Institute of Electrical and Electronics Engineers (IEEE), 2017), pp. 130–135

    Google Scholar 

  14. G.G. Wang, Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 1–14 (2016)

    Google Scholar 

  15. F. Tian, R. Zhang, J. Lewandowski, K.M. Chao, L. Li, B. Dong, Deadlock-free migration for virtual machine consolidation using Chicken Swarm Optimization algorithm. J. Intell. Fuzzy Syst. 32(2), 1389–1400 (2017)

    Article  Google Scholar 

  16. L. Amador-Angulo, O. Castillo, Comparative study of bio-inspired algorithms applied in the design of fuzzy controller for the water tank, in Recent Developments and New Direction in Soft-Computing Foundations and Applications (Springer, 2016)

    Google Scholar 

  17. T. Chaiyatham, I. Ngamroo, A bee colony optimization based fuzzy logic-PID control design of electrolyzer for microgrid stabilization. 8(9), 6049–6066 (2012)

    Google Scholar 

  18. B. Ervural, B.C. Ervural, C. Kahraman, A comprehensive literature review on nature-inspired soft computing and algorithms: tabular and graphical analyses, in Handbook of Research on Soft Computing and Nature-Inspired Algorithms (IGI Global, 2017), pp. 34–68

    Google Scholar 

  19. B. Acherjee, D. Maity, A.S. Kuar, S. Mitra, D. Misra, D. Optimization of laser transmission welding parameters using chicken swarm optimization algorithm: chicken swarm algorithm optimization, in Handbook of Research on Manufacturing Process Modeling and Optimization Strategies (IGI Global, 2017), pp. 142–161

    Google Scholar 

  20. A. Chakri, R. Khelif, M. Benouaret, X.S. Yang, New directional bat algorithm for continuous optimization problems. Expert Syst. Appl. 69, 159–175 (2017)

    Article  Google Scholar 

  21. X. He, X.S. Yang, M. Karamanoglu, Y. Zhao, Global convergence analysis of the flower pollination algorithm: a discrete-time Markov chain approach. Procedia Comput. Sci. 108, 1354–1363 (2017)

    Article  Google Scholar 

  22. K. Selvam, D.V. Kumar, Frequency control of micro grid with wind perturbations using levy walks with spider monkey optimization algorithm. Int. J. Renew. Energy Res. (IJRER) 7(1), 146–156 (2017)

    Google Scholar 

  23. N. Akhter, A. Ullah, M.Z. Rehman, N. Abdul Hamid, H. Chiroma, Chicken S-BP: an efficient chicken swarm based back-propagation algorithm, in Recent Advances on Soft Computing and Data Mining: The Second International Conference on Soft Computing and Data Mining (SCDM-2016), Bandung, Indonesia, August 18th–20th, 2016 Proceedings, vol. 549 (Springer, 2017), p. 122

    Google Scholar 

  24. Chen, S., R. Yan, Parameter estimation for chaotic systems based on improved boundary chicken swarm optimization, in International Symposium on Optoelectronic Technology and Application 2016 (International Society for Optics and Photonics, 2016), pp. 101571K–101571K

    Google Scholar 

  25. Y. Li, Y. Wu, X. Qu, Chicken swarm-based method for ascent trajectory optimization of hypersonic vehicles. J. Aerosp. Eng. 30(5), 04017043 (2017)

    Article  Google Scholar 

  26. X. Meng, Y. Liu, X. Gao, H. Zhang, A new bio-inspired algorithm: chicken swarm optimization, in International Conference in Swarm Intelligence (Springer, Cham, 2014), pp. 86–94

    Google Scholar 

  27. C. Qu, S.A. Zhao, Y. Fu, W. He, Chicken swarm optimization based on elite opposition-based learning. Math. Prob. Eng. (2017)

    Google Scholar 

  28. S. Agounad, E.H. Aassif, Y. Khandouch, G. Maze, D. Décultot, Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bio-inspired algorithms. Ultrasonics (2017)

    Google Scholar 

  29. D. Cica, B. Sredanovic, S. Borojevic, D. Kramar, An integration of bio-inspired algorithms and fuzzy logic for tool wear estimation in hard turning, in International Conference on Advanced Manufacturing Engineering and Technologies (Springer, 2017), pp. 1–12

    Google Scholar 

  30. Y. Feng, G.G. Wang, S. Deb, M. Lu, X.J. Zhao, Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization. Neural Comput. Appl. 28(7), 1619–1634 (2017)

    Article  Google Scholar 

  31. J. Galan-Jimenez, A. Gazo-Cervero, Using bio-inspired algorithms for energy levels assessment in energy efficient wired communication networks. J. Netw. Comput. Appl. 37, 171–185 (2014)

    Article  Google Scholar 

  32. T.C. Lee, K.T. Song, C.H. Lee, C.C. Teng, Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9, 305–318 (2001)

    Article  Google Scholar 

  33. J. Ma, Z. Bi, T.O. Ting, S. Hao, W. Hao, Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms. Sol. Energy 132, 606–616 (2016)

    Article  Google Scholar 

  34. S.M. Nigdeli, G. Bekdaş, X.S. Yang, Optimum tuning of mass dampers by using a hybrid method using harmony search and flower pollination algorithm, in International Conference on Harmony Search Algorithm (Springer, Singapore, 2017), pp. 222–231

    Google Scholar 

  35. N. Palmieri, X.S. Yang, F. De Rango, S. Marano, Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption. Neural Comput. Appl. 1–24 (2017)

    Google Scholar 

  36. A. Pandey, S. Banerjee, Bio-inspired computational intelligence and its application to software testing, in Handbook of Research on Soft Computing and Nature-Inspired Algorithms (IGI Global, 2017), pp. 429–444

    Google Scholar 

  37. S. Swayamsiddha, S. Parija, S.S. Singh, P.K. Sahu, Bio-inspired algorithms for mobile location management—a new paradigm, in Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications (Springer, Singapore, 2017), pp. 35–44

    Google Scholar 

  38. L.A. Zadeh, The concept of a lingüistic variable and its application to approximate reasoning, Part II. Inf. Sci. 8, 301–357 (1975)

    Article  Google Scholar 

  39. E.H. Mamdani, N. Baaklini, Prescriptive method for deriving control policy in a fuzzy-logic controller. Electron. Lett. 11(25), 625–626 (1975)

    Article  Google Scholar 

  40. F. Chao, et al.: Type-2 fuzzy hybrid controller network for robotic systems. IEEE Trans. Cybern. (2019)

    Google Scholar 

  41. S.K. Injeti, Optimal tuning of PID controller for LFC of two area power system (PV-diesel) using bio-inspired optimization algorithms. World J. Modell. Simul. 12(2), 112–124 (2016)

    Google Scholar 

  42. J.C. Biesmeijer, T.D. Seeley, The use of waggle dance information by honey bees throughout their foraging careers. Behav. Ecol. Sociobiol. 59(1), 133–142 (2005)

    Article  Google Scholar 

  43. F.C. Dyler, The biology of the dance language. Annu. Rev. Entomol. 47, 917–949 (2002)

    Article  Google Scholar 

  44. O. Castillo, Type-2 Fuzzy Logic in Intelligent Control Applications (Springer, 2012)

    Google Scholar 

  45. L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219 (2003)

    Article  Google Scholar 

  46. P. Melin, O. Castillo, Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)

    Article  Google Scholar 

  47. P. Melin, J. Amezcua, F. Valdez, O. Castillo, A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)

    Article  MathSciNet  Google Scholar 

  48. P. Melin, O. Castillo, Modelling, Simulation and Control of Non-linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, USA and Canada, 2002)

    MATH  Google Scholar 

  49. P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)

    Article  Google Scholar 

  50. M.A. Sanchez, O. Castillo, J.R. Castro, P. Melin, Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 279, 498–511 (2014)

    Article  MathSciNet  Google Scholar 

  51. D. Sanchez, P. Melin, Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng. Appl. Artif. Intell. 27, 41–56 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amador-Angulo, L., Castillo, O. (2021). Optimization of Fuzzy Trajectory Tracking in Autonomous Mobile Robots Based on Bio-inspired Algorithms. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Recent Advances of Hybrid Intelligent Systems Based on Soft Computing. Studies in Computational Intelligence, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-58728-4_15

Download citation

Publish with us

Policies and ethics