Skip to main content

Optimal Design of Fuzzy Logic Systems Through a Chicken Search Optimization Algorithm Applied to a Benchmark Problem

  • Chapter
  • First Online:
Recent Advances of Hybrid Intelligent Systems Based on Soft Computing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 915))

Abstract

In this paper an implementation of the CSO (Chicken Search Optimization) algorithm in benchmark problems is presented. CSO algorithm is used on solving the problem to find the optimal distribution on the Membership Functions (MFs) in the Type-1 Fuzzy Logic System (T1FLS) applied to fuzzy controller specifically for the water tank problem. Optimization in the structure and parameters for designing for a fuzzy tracking benchmark controller is presented. An efficiently CSO algorithm for the optimization in Fuzzy Logic Controllers (FLC) is presented. When level of noise is added in the model the CSO shows an excellent development. CSO algorithm shows better results when is compared with others metaheuristic in the simulation results for this benchmark control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Amador-Angulo, O. Castillo, Comparative analysis of designing different types of membership functions using bee colony optimization in the stabilization of fuzzy controllers, in Nature-Inspired Design of Hybrid Intelligent Systems (Springer, Cham, 2017), pp. 551–571

    Google Scholar 

  2. O. Castillo, et al., Comparative study in fuzzy controller optimization using bee colony, differential evolution, and harmony search algorithms. Algorithms 12(1), 9 (2019)

    Google Scholar 

  3. E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant, in Proceedings of the Institution of Electrical Engineers, vol. 121, no. 12 (IET, 1974), pp. 1585–1588

    Google Scholar 

  4. D. Qiao, et al., Improved evolutionary algorithm and its application in PID controller optimization. Inf. Sci. 63, 1–199205 (2020)

    Google Scholar 

  5. Y. Li, Y. Wu, X. Qu, Chicken swarm-based method for ascent trajectory optimization of hypersonic vehicles. J. Aerosp. Eng. 30(5), 04017043 (2017)

    Article  Google Scholar 

  6. X. Liang, D. Kou, L. Wen, An improved chicken swarm optimization algorithm and its application in robot path planning. IEEE Access 8, 49543–49550 (2020)

    Article  Google Scholar 

  7. I. Miramontes, P. Melin, G. Prado-Arechiga, Comparative study of bio-inspired algorithms applied in the optimization of fuzzy systems, in Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine (Springer, Cham, 2020), 219–231

    Google Scholar 

  8. B. Acherjee, D. Maity, A.S. Kuar, Ultrasonic machining process optimization by cuckoo search and chicken swarm optimization algorithms. Int. J. Appl. Metaheur. Comput. (IJAMC) 11(2), 1–26 (2020)

    Article  Google Scholar 

  9. B. Acherjee, D. Maity, A.S. Kuar, S. Mitra, D. Misra, Optimization of laser transmission welding parameters using chicken swarm optimization algorithm: chicken swarm algorithm optimization, in Handbook of Research on Manufacturing Process Modeling and Optimization Strategies (IGI Global, 2017), pp. 142–161

    Google Scholar 

  10. N. Akhter, et al., Chicken S-BP: an efficient chicken swarm based back-propagation algorithm, in Recent Advances on Soft Computing and Data Mining: The Second International Conference on Soft Computing and Data Mining (SCDM-2016), Bandung, Indonesia, August 18–20, 2016 Proceedings, vol. 549 (Springer, 2016)

    Google Scholar 

  11. N. Bharanidharan, R. Harikumar Rajaguru, Improved chicken swarm optimization to classify dementia MRI images using a novel controlled randomness optimization algorithm. Int. J. Imaging Syst. Technol. (2020)

    Google Scholar 

  12. S. Chen, R. Yan, Parameter estimation for chaotic systems based on improved boundary chicken swarm optimization, in International Symposium on Optoelectronic Technology and Application 2016 (International Society for Optics and Photonics, 2016), pp. 101571K–101571K

    Google Scholar 

  13. S. Deb, et al., A new teaching–learning-based chicken swarm optimization algorithm. Soft Comput. 24(7), 5313–5331 (2020)

    Google Scholar 

  14. J.K.M. Kumar, H. Abdul Rauf, R. Umamaheswari, switched capacitor-coupled inductor DC–DC converter for grid-connected PV system using LFCSO-based adaptive neuro-fuzzy inference system. J. Circ. Syst. Comput. 2050201 (2020)

    Google Scholar 

  15. W. Osamy, A.A. El-Sawy, A. Salim, CSOCA: chicken swarm optimization based clustering algorithm for wireless sensor networks. IEEE Access (2020)

    Google Scholar 

  16. C. Qu, S.A. Zhao, Y. Fu, W. He, Chicken swarm optimization based on elite opposition-based learning. Math. Prob. Eng. (2017)

    Google Scholar 

  17. X. Yu, et al., Assessment of water resource carrying capacity based on the chicken swarm optimization-projection pursuit model. Arab. J. Geosci. 13(1), 39 (2020)

    Google Scholar 

  18. S.A. Taie, W. Ghonaim, CSO-based algorithm with support vector machine for brain tumor’s disease diagnosis, in 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (IEEE 2017), pp. 183–187

    Google Scholar 

  19. F. Tian, R. Zhang, J. Lewandowski, K.M. Chao, L. Li, B. Dong, Deadlock-free migration for virtual machine consolidation using chicken swarm optimization algorithm. J. Intell. Fuzzy Syst. 32(2), 1389–1400 (2017)

    Article  Google Scholar 

  20. A.K. Tripathi, et al., Application of chicken swarm optimization in detection of cancer and virtual reality, in Advanced Computational Intelligence Techniques for Virtual Reality in Healthcare (Springer, Cham, 2020), pp. 165–192

    Google Scholar 

  21. L. Zadeh, Fuzzy sets. Inf. Control 8(338) (1965)

    Google Scholar 

  22. L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  23. L.A. Zadeh, The concept of a lingüistic variable and its application to approximate reasoning, Part II. Information Sciences 8, 301–357 (1975)

    Article  Google Scholar 

  24. E.H. Mamdani, N. Baaklini, Prescriptive method for deriving control policy in a fuzzy-logic controller. Electron. Lett. 11(25), 625–626 (1975)

    Article  Google Scholar 

  25. O. Castillo, et al., A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)

    Google Scholar 

  26. C.C. Lee, Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)

    Google Scholar 

  27. X. Meng, Y. Liu, X. Gao, H. Zhang, A new bio-inspired algorithm: chicken swarm optimization, in International Conference in Swarm Intelligence (Springer, Cham, 2014), pp. 86–94

    Google Scholar 

  28. G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in The 14th IEEE International Conference on Fuzzy Systems. FUZZ’05 (2005), pp. 230–235

    Google Scholar 

  29. P. Melin, C.I. González, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)

    Article  Google Scholar 

  30. C.I. González, P. Melin, J.R. Castro, O. Castillo, O. Mendoza, Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)

    Article  Google Scholar 

  31. C.I. González, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved Sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)

    Article  Google Scholar 

  32. E. Ontiveros, P. Melin, O. Castillo, High order α-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems. Eng. Appl. of AI 74, 186–197 (2018)

    Article  Google Scholar 

  33. P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955

    Google Scholar 

  34. L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219 (2003)

    Article  Google Scholar 

  35. P. Melin, O. Castillo, Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)

    Article  Google Scholar 

  36. P. Melin, J. Amezcua, F. Valdez, O. Castillo, A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)

    Article  MathSciNet  Google Scholar 

  37. P. Melin, O. Castillo, Modelling, simulation and control of non-linear dynamical systems: an intelligent approach using soft computing and fractal theory (CRC Press, USA and Canada, 2002)

    MATH  Google Scholar 

  38. P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)

    Article  Google Scholar 

  39. M.A. Sanchez, O. Castillo, J.R. Castro, P. Melin, Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 279, 498–511 (2014)

    Article  MathSciNet  Google Scholar 

  40. D. Sanchez, P. Melin, Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng. Appl. Artif. Intell. 27, 41–56 (2014)

    Article  Google Scholar 

  41. O. Castillo, Type-2 Fuzzy Logic in Intelligent Control Applications (Springer, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amador-Angulo, L., Castillo, O. (2021). Optimal Design of Fuzzy Logic Systems Through a Chicken Search Optimization Algorithm Applied to a Benchmark Problem. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Recent Advances of Hybrid Intelligent Systems Based on Soft Computing. Studies in Computational Intelligence, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-58728-4_14

Download citation

Publish with us

Policies and ethics