Abstract
The convolutional neural network has achieved great success in the classification of medical imaging including breast cancer classification. Breast cancer is one of the most dangerous cancers impacting women all over the world. In this paper, we propose a deep learning framework. This framework includes the proposed pre-processing phase and the proposed separable convolutional neural network (SCNN) model. Our pre-processing uses patch extraction and data augmentation to enrich the training set and improve the performance. The SCNN model uses separable convolution and parametric rectified linear unit (PRELU) as an activation function. The SCNN shows superior performance and faster than the pre-trained neural network models. The SCNN approach is evaluated using the BACH2018 dataset [1]. We test the performance using 40 random images. The framework achieves accuracy between 97.5% and 100%. The best accuracy is 100% for multi-class and binary class. The framework provides superior classification performance compared to existing approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S.S., Safwan, M., Alex, V., Marami, B., Prastawa, M., Chan, M., Donovan, M., Fernandez, G., Zeineh, J., Kohl, M., Walz, C., Ludwig, F., Braunewell, S., Baust, M., Vu, Q.D., To, M.N.N., Aguiar, P.: BACH: grand challenge on breast cancer histology images. Med. Image Anal. 56, 122–139 (2019)
American Cancer Society (2017). https://www.cancer.org
Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson, A.N.A., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313(11), 1122–1132 (2015)
Wang, G., Yuan, G., Li, T., Lv, M.: An multi-scale learning network with depthwise separable convolutions. IPSJ Trans. Comput. Vis. Appl. 10(1), 1–8 (2018)
Bayramoglu, N., Kannala, J., Heikkilä, J.: Deep learning for magnification independent breast cancer histopathology image classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2440–2445. IEEE (2016)
Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)
Araujo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Pol´onia, A., Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PLOS ONE 12(6), 1–14 (2017)
Chennamsetty, S.S., Safwan, M., Alex, V.: Classification of breast cancer histology image using an ensemble of pre-trained neural networks. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 804–811. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_91
Kwok, S.: Multiclass classification of breast cancer in whole-slide images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 931–940. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_106
Alom, M.Z., Yakopcic, C., Nasrin, M.S., Taha, T.M., Asari, V.K.: Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. J. Digit. Imaging 32(4), 605617 (2019)
Zhang, Y.D., Pan, C., Chen, X., Wang, F.: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling. J. Comput. Sci. 27, 57–68 (2018)
Nahid, A.A., Kong, Y.: Involvement of machine learning for breast cancer image classification: a survey. Comput. Math. Meth. Med. (2017)
Golatkar, A., Anand, D., Sethi, A.: Classification of breast cancer histology using deep learning. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNCS, vol. 10882, pp. 837–844. Springer, Cham (2018)
Rakhlin, A., Shvets, A., Iglovikov, V., Kalinin, A.A.: Deep convolutional neural networks for breast cancer histology image analysis. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition. (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNCS, vol. 10882, pp. 737–744. Springer, Cham (2018)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gaber, H., Mohamed, H., Ibrahim, M. (2021). Breast Cancer Classification from Histopathological Images with Separable Convolutional Neural Network and Parametric Rectified Linear Unit. In: Hassanien, A.E., Slowik, A., Snášel, V., El-Deeb, H., Tolba, F.M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-58669-0_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58668-3
Online ISBN: 978-3-030-58669-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)